Knowledge How to Make Nickel Foam: A Step-by-Step Guide for 4 Key Processes
Author avatar

Tech Team · Kintek Solution

Updated 2 weeks ago

How to Make Nickel Foam: A Step-by-Step Guide for 4 Key Processes

Making nickel foam involves a specialized process that combines the electroplating of nickel onto a conductive polyurethane foam followed by sintering.

This method uses the unique properties of nickel, such as its malleability and conductivity, to create a lightweight yet robust foam structure.

The process starts with preparing the polyurethane foam by making it conductive, which is essential for the electroplating step.

Here’s a detailed breakdown of the steps involved:

How to Make Nickel Foam: A Step-by-Step Guide for 4 Key Processes

How to Make Nickel Foam: A Step-by-Step Guide for 4 Key Processes

1. Preparation of Polyurethane Foam

Conductivity Enhancement: The polyurethane foam, which is initially an insulator, must be converted into a conductive material to facilitate the electroplating process.

This is achieved by immersing the foam into a colloidal graphite dispersion.

Colloidal graphite is chosen due to its ability to uniformly coat the foam, providing a conductive surface without significantly altering the foam’s structural integrity.

Drying: After the foam is coated with colloidal graphite, it is dried.

This step is crucial to ensure that the graphite adheres properly and that the foam is ready for the subsequent electroplating process.

2. Electroplating Process

Setup: The conductive polyurethane foam is placed in an electrolytic bath containing a nickel salt solution.

An electric current is then passed through the solution, which causes the nickel ions to deposit onto the conductive foam.

Deposition: The electroplating process is controlled to ensure a uniform and dense coating of nickel foam on the foam.

This involves maintaining appropriate current densities and bath conditions to prevent defects such as pitting or uneven deposition.

3. Sintering

Purpose: After the nickel has been deposited onto the foam, the assembly is subjected to a sintering process.

Sintering involves heating the material to a temperature below its melting point but high enough to cause the nickel particles to bond together.

Outcome: This bonding strengthens the structure and enhances the mechanical properties of the Nickel Foam.

The sintering process also helps in removing any residual porosity and ensures that the foam has the desired strength and durability.

4. Final Product Characteristics

Properties: The resulting Nickel Foam combines the lightweight and flexible nature of the original polyurethane foam with the conductive and durable properties of nickel.

This makes it suitable for applications requiring a material that is both lightweight and electrically conductive, such as in batteries, electrodes, and various industrial filters.

Applications: The versatility of Nickel Foam is leveraged in multiple industries, including automotive, aerospace, and energy storage, where its unique combination of properties is highly beneficial.

By following these steps, a high-quality Nickel Foam can be produced that meets the specific requirements of various industrial applications.

The process not only transforms a basic polyurethane foam into a conductive and robust material but also opens up new possibilities for lightweight and efficient designs in numerous sectors.

Continue Exploring, Consult Our Experts

Take the Next Step: Discover how KINTEK SOLUTION's advanced nickel foam can elevate your projects.

Contact us today to explore how our solutions can drive innovation in your industry.

Don’t miss the opportunity to integrate the future into your designs.

Key Benefits:

  • Lightweight yet robust structure
  • Enhanced conductivity and durability
  • Perfect for high-performance applications
  • Ideal for various industries: automotive, aerospace, and energy storage

Why Choose KINTEK SOLUTION?

  • Precision engineering in laboratory equipment
  • Commitment to cutting-edge research and development
  • Tailored solutions for a diverse range of industries

Related Products

Nickel Foam

Nickel Foam

Nickel foam is a high-tech deep-processing, and the metal nickel is made into a foam sponge, which has a three-dimensional full-through mesh structure.

Foam Metal Sheet - Copper Foam / Nickel

Foam Metal Sheet - Copper Foam / Nickel

Discover the benefits of foam metal sheets for electrochemical tests. Our foam copper/nickel sheets are ideal for current collectors and capacitors.

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel (Ni) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Nickel (Ni) materials for laboratory use? Look no further than our customizable selection! With competitive prices and a range of sizes and shapes to choose from, we have everything you need to meet your unique requirements.

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Oxide materials for your laboratory needs at affordable prices. Our tailored solutions fit your specific requirements. Discover a range of shapes, sizes, and specifications for sputtering targets, coatings, powders, and more.

Iron Nickel Alloy (FeNi) Sputtering Target / Powder / Wire / Block / Granule

Iron Nickel Alloy (FeNi) Sputtering Target / Powder / Wire / Block / Granule

Discover affordable Iron Nickel Alloy materials tailored to your lab's needs. Our FeNi products come in various sizes and shapes, from sputtering targets to powders and ingots. Order now!

Copper foam

Copper foam

Copper foam has good thermal conductivity and can be widely used for heat conduction and heat dissipation of motors/electrical appliances and electronic components.

Nickel Silicon Alloy (NiSi) Sputtering Target / Powder / Wire / Block / Granule

Nickel Silicon Alloy (NiSi) Sputtering Target / Powder / Wire / Block / Granule

Looking for Nickel Silicon Alloy materials for your lab? Our expertly produced and tailored materials come in various shapes and sizes to suit your unique needs. Get sputtering targets, coating materials, powders, and more at reasonable prices.

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Niobium Alloy (NiNb) materials for your laboratory needs. We offer tailored purities, shapes, and sizes, plus sputtering targets, coatings, powders, and more. Explore our range now!

Nickel Chromium Alloy (NiCr) Sputtering Target / Powder / Wire / Block / Granule

Nickel Chromium Alloy (NiCr) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Nickel Chromium Alloy (NiCr) materials for your lab needs at affordable prices. Choose from a wide range of shapes and sizes, including sputtering targets, coatings, powders, and more. Tailored to suit your unique requirements.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Nickel Aluminum Alloy (NiAl) Sputtering Target / Powder / Wire / Block / Granule

Nickel Aluminum Alloy (NiAl) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Nickel Aluminum Alloy materials for your lab? Our experts produce and customize NiAl materials to suit your specific needs. Find a wide range of sizes and specifications for sputtering targets, coating materials, and more at affordable prices.

Titanium Nickel Silver Alloy (TiNiAg) Sputtering Target / Powder / Wire / Block / Granule

Titanium Nickel Silver Alloy (TiNiAg) Sputtering Target / Powder / Wire / Block / Granule

Looking for customizable TiNiAg materials? We offer a wide range of sizes and purities at competitive prices, including sputtering targets, coating materials, powders, and more. Contact us today!

Nickel-aluminum tabs for soft pack lithium batteries

Nickel-aluminum tabs for soft pack lithium batteries

Nickel tabs are used to manufacture cylindrical and pouch batteries, and positive aluminum and negative nickel are used to produce lithium-ion and nickel batteries.

High Purity Zinc Foil

High Purity Zinc Foil

There are very few harmful impurities in the chemical composition of zinc foil, and the surface of the product is straight and smooth; it has good comprehensive properties, processability, electroplating colorability, oxidation resistance and corrosion resistance, etc.

metal disk electrode

metal disk electrode

Elevate your experiments with our Metal Disk Electrode. High-quality, acid and alkali resistant, and customizable to fit your specific needs. Discover our complete models today.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

High-purity titanium foil / titanium sheet

High-purity titanium foil / titanium sheet

Titanium is chemically stable, with a density of 4.51g/cm3, which is higher than aluminum and lower than steel, copper, and nickel, but its specific strength ranks first among metals.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.


Leave Your Message