Products Lab Consumables & Materials Thin Film Deposition Parts Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation
Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

Thin Film Deposition Parts

Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

Item Number : KMS05

Price varies based on specs and customizations


Material
Molybdenum / Tungsten
Specification
28-50*13.2-25mm
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Tungsten and molybdenum crucibles are widely used in the electron beam evaporation process for gold plating applications. These crucibles act as vessels to contain the gold material being evaporated while precisely directing the electron beam for precise deposition. The exceptional properties of tungsten and molybdenum make them ideal for high temperature applications in evaporative deposition.

The crucible plays a vital role in ensuring that the gold material reaches the temperature required for evaporation, allowing controlled and precise deposition on the substrate. Furthermore, their stability, durability and corrosion resistance contribute significantly to the overall performance and reliability of the gold plating process.

It is worth noting that the choice between tungsten and molybdenum crucibles depends on specific requirements such as operating temperature, desired level of corrosion resistance, and other factors related to a particular gold plating application.

Detail & Parts

Electron beam evaporation coating / gold plating / tungsten crucible / molybdenum crucible detail

Electron beam evaporation coating / gold plating / tungsten crucible / molybdenum crucible details 2

Electron beam evaporation coating / gold plating / tungsten crucible / molybdenum crucible detals 3

Technical specifications

Molybdenum outer diameter & High 28*13.2mm 35*17mm 40*20mm 42*20mm 45*22mm 50*25mm
Tungsten outer diameter & High 28*13mm 35*17mm 40*19mm 42*20mm 45*22mm 50*25mm
The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • High Melting Point: Ideal for applications involving extreme temperatures.
  • Efficient Heat Transfer: Contributes to efficient heat transfer during electron beam evaporation; enabling optimal heat dissipation and increasing the overall efficiency of the evaporation process.
  • Corrosion Resistance: Tungsten is highly resistant to corrosion by various substances, including acids and alkalis. Widely used in a variety of electroplating applications where corrosion protection is required. In contrast, molybdenum crucibles have lower corrosion resistance than tungsten crucibles.
  • High Density: Ensures that the crucible retains its structural integrity and can withstand the harsh conditions encountered during the gold plating process.
  • Low gas pressure: Molybdenum is similar to tungsten, this quality minimizes the risk of contamination during evaporation and guarantees the purity and quality of the gold deposit.

FAQ

What Are Thermal Evaporation Sources?

Thermal evaporation sources are devices used in thermal evaporation systems to deposit thin films onto substrates. They work by heating a material (evaporant) to high temperatures, causing it to evaporate and then condense onto a substrate, forming a thin film.

What Are The Main Types Of Thermal Evaporation Sources?

The main types of thermal evaporation sources include resistive evaporation sources, electron-beam evaporation sources, and flash evaporation sources. Each type uses different methods to heat the evaporant, such as resistive heating, electron beam heating, or direct contact with a hot surface.

How Do Thermal Evaporation Sources Work?

Thermal evaporation sources work by passing electrical current through a resistive material, which heats up to high temperatures. This heat is transferred to the evaporant, causing it to melt and vaporize. The vapor then travels through a vacuum chamber and condenses onto a substrate, forming a thin film.

What Are The Common Materials Used For Evaporating Crucibles?

Evaporating crucibles are commonly made from materials such as tungsten, tantalum, molybdenum, graphite, or ceramic compounds. These materials have high melting points and good thermal conductivity, making them suitable for the high-temperature conditions required during evaporation. The choice of crucible material depends on factors such as the evaporant material, desired film properties, and process parameters.

What Are The Advantages Of Using Thermal Evaporation Sources?

The advantages of thermal evaporation sources include high deposition rates, good directionality, excellent uniformity, and compatibility with various materials. They are also relatively simple and affordable, making them suitable for a wide range of applications in thin film deposition.

What Are The Advantages Of Using Evaporating Crucibles?

Evaporating crucibles offer several advantages in thin film deposition processes. They provide a controlled environment for the evaporation of materials, allowing for precise control over film thickness and uniformity. Crucibles can withstand high temperatures and provide efficient heat transfer, ensuring consistent evaporation rates. They are available in various sizes and shapes to accommodate different evaporation systems and substrate configurations. Evaporating crucibles also allow for the deposition of a wide range of materials, including metals, semiconductors, and ceramics. They can be easily loaded and unloaded, facilitating quick material changes or process adjustments. Overall, evaporating crucibles are essential tools in thin film deposition techniques, offering versatility, reliability, and reproducibility.

What Applications Are Thermal Evaporation Sources Used For?

Thermal evaporation sources are used in various applications such as the production of optical coatings, semiconductor devices, and various types of thin films. They are particularly useful in industries that require precise control over the deposition of materials onto substrates.

How Should Evaporating Crucibles Be Handled And Maintained?

Evaporating crucibles should be handled and maintained with care to ensure their longevity and performance. Crucibles should be cleaned thoroughly before each use to remove any residual material from previous depositions. Avoid using abrasive materials that could damage the crucible's surface. During loading and unloading, handle crucibles with clean gloves or specialized tools to prevent contamination. When not in use, store crucibles in a dry and clean environment to avoid corrosion or degradation. Regular inspection of crucibles for cracks, defects, or signs of wear is important to prevent unexpected failures during the evaporation process. Follow the manufacturer's recommendations for any specific maintenance procedures, such as annealing or surface treatment, to prolong the crucible's lifespan.
View more faqs for this product

4.8

out of

5

Molybdenum Crucible is a game-changer for e-beam evaporation. The top tier quality is worth every penny.

Hanan Schumacher

4.7

out of

5

Excellent product, exceeded my expectations. Impeccable craftsmanship and durability.

Sohini Brown

4.9

out of

5

The Molybdenum Crucible is worth the wait. Fast shipping and exceptional customer service.

Jiya Patel

4.6

out of

5

Highly recommend! The Molybdenum Crucible is a game-changer for our laboratory. Thank you, KINTEK SOLUTION.

Aayan Smith

4.8

out of

5

The Molybdenum Crucible is a must-have for any lab. Excellent quality and craftsmanship.

Aiden Harris

4.7

out of

5

Switching to the Molybdenum Crucible was the best decision. High-quality product and remarkable performance.

Amelia Jones

4.9

out of

5

The Molybdenum Crucible is a fantastic product. It's durable, reliable, and produces consistent results.

Liam Walker

4.6

out of

5

Highly impressed with the Molybdenum Crucible. It's a valuable addition to our lab equipment.

Isabella Garcia

4.8

out of

5

The Molybdenum Crucible is a great choice for e-beam evaporation. Highly recommend it.

Elijah Martinez

4.7

out of

5

Excellent product. The Molybdenum Crucible has enhanced our research capabilities.

Harper Clark

PDF - Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Evaporation Crucible

Download

Catalog of Thermal Evaporation Sources

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

E Beam Crucibles Electron Gun Beam Crucible for Evaporation

E Beam Crucibles Electron Gun Beam Crucible for Evaporation

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Hemispherical Bottom Tungsten Molybdenum Evaporation Boat

Hemispherical Bottom Tungsten Molybdenum Evaporation Boat

Used for gold plating, silver plating, platinum, palladium, suitable for a small amount of thin film materials. Reduce the waste of film materials and reduce heat dissipation.

High Purity Pure Graphite Crucible for Electron Beam Evaporation

High Purity Pure Graphite Crucible for Electron Beam Evaporation

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Tungsten Evaporation Boat for Thin Film Deposition

Tungsten Evaporation Boat for Thin Film Deposition

Learn about tungsten boats, also known as evaporated or coated tungsten boats. With a high tungsten content of 99.95%, these boats are ideal for high-temperature environments and widely used in various industries. Discover their properties and applications here.

High Purity Pure Graphite Crucible for Evaporation

High Purity Pure Graphite Crucible for Evaporation

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Folding Molybdenum Tantalum Boat With or Without Cover

Folding Molybdenum Tantalum Boat With or Without Cover

Molybdenum boat is an important carrier for preparing molybdenum powder and other metal powders, with high density, melting point, strength and temperature resistance.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

20L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking Gastronomy and Laboratory Rotary Vacuum Evaporator Price Distillation

20L Rotary Evaporator Rotavapor Rotovap for Extraction Molecular Cooking Gastronomy and Laboratory Rotary Vacuum Evaporator Price Distillation

Efficiently separate "low boiling" solvents with the 20L Rotary Evaporator, ideal for chemical labs in pharmaceutical and other industries. Guarantees working performance with selected materials and advanced safety features.

Laboratory Vertical Water Circulating Vacuum Pump for Lab Use

Laboratory Vertical Water Circulating Vacuum Pump for Lab Use

Looking for a reliable water circulating vacuum pump for your lab or small-scale industry? Check out our Vertical Water Circulating Vacuum Pump with five taps and a larger air sucking amount, perfect for evaporation, distillation, and more.

Laboratory Benchtop Water Circulating Vacuum Pump for Lab Use

Laboratory Benchtop Water Circulating Vacuum Pump for Lab Use

Need a water circulating vacuum pump for your lab or small-scale industry? Our Benchtop Water Circulating Vacuum Pump is perfect for evaporation, distillation, crystallization, and more.

Boron Nitride (BN) Crucible for Phosphorous Powder Sintered

Boron Nitride (BN) Crucible for Phosphorous Powder Sintered

Phosphorus powder sintered boron nitride (BN) crucible has a smooth surface, dense, pollution-free and long service life.

Related Articles

Exploring the Benefits of Using Tungsten for Furnace Heating

Exploring the Benefits of Using Tungsten for Furnace Heating

Tungsten has a number of properties that make it well-suited for use in high-temperature furnaces.

Find out more
Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Discover the intricacies of vacuum induction melting furnaces, their components, operation, advantages, and applications. Explore how these furnaces revolutionize metal processing and achieve exceptional material properties.

Find out more
Electron Beam Evaporation Coating Technology and Material Selection

Electron Beam Evaporation Coating Technology and Material Selection

An in-depth look at the principles and applications of electron beam evaporation coating technology, including material selection and various fields of application.

Find out more
Electron Beam Evaporation Coating: Principles, Characteristics, and Applications

Electron Beam Evaporation Coating: Principles, Characteristics, and Applications

An in-depth analysis of electron beam evaporation coating technology, its advantages, disadvantages, and applications in thin film manufacturing.

Find out more
Electron Beam Evaporation Coating: Advantages, Disadvantages, and Applications

Electron Beam Evaporation Coating: Advantages, Disadvantages, and Applications

An in-depth look at the pros and cons of electron beam evaporation coating and its various applications in industries.

Find out more
Electron Beam Evaporation Technology in Vacuum Coating

Electron Beam Evaporation Technology in Vacuum Coating

An in-depth look at electron beam evaporation, its types, advantages, and disadvantages in vacuum coating processes.

Find out more
Electron Beam Evaporation: Advanced Thin Film Creation

Electron Beam Evaporation: Advanced Thin Film Creation

Explores the technology and applications of electron beam evaporation in thin film production.

Find out more
Challenges in the Development and Application of Tantalum in Vacuum Deposition Equipment

Challenges in the Development and Application of Tantalum in Vacuum Deposition Equipment

This article discusses the role of tantalum in vacuum deposition equipment, focusing on its properties, manufacturing challenges, and its critical applications in industries like OLED screen production.

Find out more
Understanding Evaporation Plating, Sputtering Plating, and Ion Plating

Understanding Evaporation Plating, Sputtering Plating, and Ion Plating

A detailed comparison of evaporation plating, sputtering plating, and ion plating techniques, their principles, types, and characteristics.

Find out more
Selecting Vacuum Coating Materials: Key Factors and Considerations

Selecting Vacuum Coating Materials: Key Factors and Considerations

Guidelines on choosing the right vacuum coating materials based on application, material properties, deposition methods, economy, substrate compatibility, and safety.

Find out more
Application, Preparation, and Recovery of Precious Metal Targets in Semiconductor Manufacturing

Application, Preparation, and Recovery of Precious Metal Targets in Semiconductor Manufacturing

Discusses the use, preparation, and recycling of precious metal targets in semiconductor manufacturing.

Find out more
The Role and Types of Crucibles in Scientific Experiments

The Role and Types of Crucibles in Scientific Experiments

Explores the significance and various types of crucibles in scientific experiments, focusing on their materials and applications.

Find out more