Products Lab Consumables & Materials Thin Film Deposition Parts Boron Nitride (BN) Crucible - Phosphorous Powder Sintered
Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Thin Film Deposition Parts

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Item Number : KM-D01

Price varies based on specs and customizations


Material
Boron nitride
Specification
2 / 3 / 5 / 10 / 20 / 50 / 100ML
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

phosphorous powder sintered boron nitride (BN) crucible are synthetic technical ceramic materials. It has excellent thermal properties: high thermal conductivity and excellent thermal shock resistance, smooth, dense surface, no pollution, and long service life. Used for phosphor powder sintering, ceramic silicate melting, metal smelting, and crystal growth.

Adding different shapes and quantities of BN materials in PiG (phosphor in glass) can effectively control the mechanical strength, heat dissipation and luminescence properties of the sheet. A fluorescent film with strong thermal stability and mechanical properties, PiG prepared by adding an appropriate amount of nanotubes and nanosheets has higher quantum efficiency and better heat dissipation performance after being excited by high-power LEDs.

Small boron nitride crucibles for phosphor sintering are also suitable for crystal growth in molten metal smelting of ceramic silicates.

Detail & Parts

Phosphor powder sintered boron nitride crucible details

Phosphor powder sintered boron nitride crucible details 2

Phosphor powder sintered boron nitride crucible detail 2

Phosphor powder sintered boron nitride crucible detail 3

Technical specifications

Capacity and size (inner and outer diameter and height)
  • 2ml(16*12*20mm)
  • 3ml(20*16*18mm)
  • 5ml(24*20*22mm)
  • 10ml(28*24*30mm)
  • 20ml(32*26*32mm)
  • 50ml(47*41*45mm)
  • 100ml(58*50*58mm)

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • Excellent heat cycle resistance; high thermal stability.
  • Low thermal expansion; electrical insulation.
  • High thermal conductivity even at high operating temperatures
  • Good mold release properties; easy machining.
  • Resists wetting by most molten metals.

FAQ

What Are The Applications Of Boron Nitride Ceramic Parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What Are The Advantages Of Using Boron Nitride Ceramic Parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

What Are The Advantages Of Using Ceramic Crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

How Are High-purity Graphite Crucibles Made?

High-purity graphite crucibles are typically manufactured through a process called isostatic pressing. In this method, graphite powder is placed in a rubber mold, and then subjected to high pressure from all directions. This pressure compacts the graphite particles into a dense and uniform crucible shape. The crucible is then heated to a high temperature to remove any impurities and improve its purity.

What Are The Common Applications Of Alumina Crucibles?

Alumina crucibles have diverse applications in industries such as metallurgy, ceramics, chemistry, and materials research. They are commonly used for high-temperature processes, including melting, calcination, and sintering of metals, alloys, and ceramics. Alumina crucibles are also utilized in the production of catalysts, glass, and advanced materials. In laboratories, they are used for sample preparation, heating, and chemical reactions. Additionally, alumina crucibles find applications in thermal analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

What Considerations Should Be Made When Selecting Boron Nitride Ceramic Parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What Are Some Common Uses Of Ceramic Crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

What Are The Common Applications Of High-purity Graphite Crucibles?

High-purity graphite crucibles have a wide range of applications in industries such as metallurgy, foundries, and laboratories. They are commonly used for melting and casting non-ferrous metals, including aluminum, copper, and precious metals. High-purity graphite crucibles are also utilized in the production of alloys and high-temperature ceramics. They are essential in processes such as chemical analysis, spectroscopy, and sample preparation in laboratories. Additionally, these crucibles find applications in the semiconductor industry for the melting and growing of silicon and other semiconductor materials.

What Are The Advantages Of Using Alumina Crucibles?

Alumina crucibles offer several advantages in high-temperature applications. Firstly, they have excellent thermal shock resistance, allowing them to withstand rapid heating and cooling without cracking. Alumina crucibles also have high chemical resistance, making them suitable for use with acids, bases, and other corrosive materials. They have low electrical conductivity, which is beneficial for preventing electrical interference in certain applications. Alumina crucibles are also inert and do not react with most substances, ensuring the purity of the materials being processed. Additionally, they have a long lifespan and can withstand repeated use at high temperatures.

What Manufacturing Processes Are Used To Produce Boron Nitride Ceramic Parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.

How Can I Choose The Right Ceramic Crucible For My Application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

What Factors Should Be Considered When Selecting High-purity Graphite Crucibles?

When selecting high-purity graphite crucibles, several factors should be considered. Firstly, the size and capacity of the crucible should align with the intended application and the amount of material to be melted or processed. The crucible's thermal conductivity, thermal shock resistance, and chemical compatibility should be evaluated to ensure they meet the specific process requirements. It is important to select crucibles made from high-quality graphite material with high purity levels to minimize contamination and ensure excellent performance. The crucible's design and construction should also be considered, such as the presence of handles or pouring spouts for easy handling. Additionally, it is advisable to consult with manufacturers or experts in the field to ensure the selection of the most suitable high-purity graphite crucibles for specific applications.

How Should Alumina Crucibles Be Handled And Maintained?

Proper handling and maintenance of alumina crucibles are crucial to ensure their longevity and optimal performance. When handling, it is important to avoid dropping or impacting the crucibles to prevent cracking or damage. They should be stored in a clean and dry environment to avoid contamination. Regular cleaning of the crucibles is necessary to remove any residual materials or impurities. This can be done using a soft brush, mild detergent, or solvents suitable for alumina. It is recommended to preheat the crucibles before use, especially when subjected to rapid temperature changes, to prevent thermal shock. Crucibles should be inspected for cracks, erosion, or other damage, and if any issues are found, they should be replaced to maintain the quality of the materials being processed. Following the manufacturer's guidelines for maintenance and handling is essential.

How Should Ceramic Crucibles Be Handled And Maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.
View more faqs for this product

4.9

out of

5

The Boron Nitride crucible is perfect for my high-temperature experiments. It can withstand extreme temperatures and is chemically inert, so I can use it with a variety of materials.

Yana Bogdanova

4.7

out of

5

This crucible is a game-changer for my research. It's durable, easy to clean, and provides excellent thermal insulation. Highly recommended!

Dr. Rajeev Sharma

4.8

out of

5

The quality of this crucible is top-notch. It's made from high-purity BN, which ensures consistent and reliable performance. I'm very satisfied with my purchase.

Ing. Juan Carlos

4.6

out of

5

I was impressed with the fast delivery of this crucible. It arrived well-packaged and in perfect condition. Thank you for the excellent service!

Ms. Sarah Mitchell

4.9

out of

5

The Boron Nitride crucible exceeded my expectations. It's incredibly durable and has held up well under extreme conditions. I highly recommend it for demanding applications.

Dr. Ahmed Al-Saffar

4.7

out of

5

This crucible is a great value for the price. It's well-made and performs just as well as more expensive brands. I'm very happy with my purchase.

Mr. Nguyen Van

4.8

out of

5

I'm very impressed with the technological advancements of this crucible. It's designed to withstand extreme temperatures and provide excellent thermal insulation. It's a must-have for any laboratory.

Ms. Maria Rodriguez

4.6

out of

5

The Boron Nitride crucible is a great addition to my lab. It's easy to use and clean, and it provides excellent results. I highly recommend it to other researchers.

Dr. Samuel Cohen

4.9

out of

5

This crucible is simply amazing! It can withstand temperatures up to 2000 degrees Celsius and is resistant to most corrosive chemicals. It's a must-have for any high-temperature application.

Mr. Li Wei

4.7

out of

5

I'm very happy with the performance of this crucible. It's durable, reliable, and provides excellent thermal insulation. I would definitely recommend it to others.

Ms. Amina Patel

4.8

out of

5

The Boron Nitride crucible is a valuable asset to my lab. It's perfect for high-temperature experiments and provides excellent results. I highly recommend it to other scientists.

Dr. Carlos Sanchez

4.6

out of

5

This crucible is a great investment for any laboratory. It's durable, easy to use, and provides excellent results. I'm very happy with my purchase.

Ms. Fatima Bint Hassan

4.9

out of

5

The Boron Nitride crucible is a game-changer for my research. It's allowed me to achieve results that I couldn't have with other crucibles. I highly recommend it to other researchers.

Dr. David Miller

PDF - Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Boron Nitride Ceramics

Download

Catalog of Ceramic Crucible

Download

Catalog of High Purity Graphite Crucible

Download

Catalog of Alumina Crucible

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Shop Boron Nitride materials for your laboratory needs at reasonable prices. We tailor materials to your requirements with varying purities, shapes, and sizes. Choose from a wide range of specifications and sizes.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Boron (B) materials tailored to your specific lab needs. Our products range from sputtering targets to 3D printing powders, cylinders, particles, and more. Contact us today.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide materials at reasonable prices for your lab needs. We customize BC materials of different purities, shapes, and sizes, including sputtering targets, coatings, powders, and more.

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal boron nitride (HBN) gaskets are made from hot-pressed boron nitride blanks. Mechanical properties similar to graphite, but with excellent electrical resistance.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Lithium battery tab tape

Lithium battery tab tape

PI polyimide tape, generally brown, also known as gold finger tape, high temperature resistance 280 ℃, to prevent the influence of heat sealing of soft pack battery lug glue, suitable for soft pack battery tab position glue.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.