Products Lab Consumables & Materials Thin Film Deposition Parts Boron Nitride (BN) Crucible - Phosphorous Powder Sintered
Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Thin Film Deposition Parts

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Item Number : KM-D01

Price varies based on specs and customizations


Material
Boron nitride
Specification
2 / 3 / 5 / 10 / 20 / 50 / 100ML
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

phosphorous powder sintered boron nitride (BN) crucible are synthetic technical ceramic materials. It has excellent thermal properties: high thermal conductivity and excellent thermal shock resistance, smooth, dense surface, no pollution, and long service life. Used for phosphor powder sintering, ceramic silicate melting, metal smelting, and crystal growth.

Adding different shapes and quantities of BN materials in PiG (phosphor in glass) can effectively control the mechanical strength, heat dissipation and luminescence properties of the sheet. A fluorescent film with strong thermal stability and mechanical properties, PiG prepared by adding an appropriate amount of nanotubes and nanosheets has higher quantum efficiency and better heat dissipation performance after being excited by high-power LEDs.

Small boron nitride crucibles for phosphor sintering are also suitable for crystal growth in molten metal smelting of ceramic silicates.

Detail & Parts

Phosphor powder sintered boron nitride crucible details

Phosphor powder sintered boron nitride crucible details 2

Phosphor powder sintered boron nitride crucible detail 2

Phosphor powder sintered boron nitride crucible detail 3

Technical specifications

Capacity and size (inner and outer diameter and height)
  • 2ml(16*12*20mm)
  • 3ml(20*16*18mm)
  • 5ml(24*20*22mm)
  • 10ml(28*24*30mm)
  • 20ml(32*26*32mm)
  • 50ml(47*41*45mm)
  • 100ml(58*50*58mm)

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • Excellent heat cycle resistance; high thermal stability.
  • Low thermal expansion; electrical insulation.
  • High thermal conductivity even at high operating temperatures
  • Good mold release properties; easy machining.
  • Resists wetting by most molten metals.

FAQ

What are the applications of Boron Nitride ceramic parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What are the advantages of using Boron Nitride ceramic parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

What considerations should be made when selecting Boron Nitride ceramic parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What are the common materials used for evaporating crucibles?

Evaporating crucibles are commonly made from materials such as tungsten, tantalum, molybdenum, graphite, or ceramic compounds. These materials have high melting points and good thermal conductivity, making them suitable for the high-temperature conditions required during evaporation. The choice of crucible material depends on factors such as the evaporant material, desired film properties, and process parameters.

What manufacturing processes are used to produce Boron Nitride ceramic parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.

What are the advantages of using evaporating crucibles?

Evaporating crucibles offer several advantages in thin film deposition processes. They provide a controlled environment for the evaporation of materials, allowing for precise control over film thickness and uniformity. Crucibles can withstand high temperatures and provide efficient heat transfer, ensuring consistent evaporation rates. They are available in various sizes and shapes to accommodate different evaporation systems and substrate configurations. Evaporating crucibles also allow for the deposition of a wide range of materials, including metals, semiconductors, and ceramics. They can be easily loaded and unloaded, facilitating quick material changes or process adjustments. Overall, evaporating crucibles are essential tools in thin film deposition techniques, offering versatility, reliability, and reproducibility.

How should evaporating crucibles be handled and maintained?

Evaporating crucibles should be handled and maintained with care to ensure their longevity and performance. Crucibles should be cleaned thoroughly before each use to remove any residual material from previous depositions. Avoid using abrasive materials that could damage the crucible's surface. During loading and unloading, handle crucibles with clean gloves or specialized tools to prevent contamination. When not in use, store crucibles in a dry and clean environment to avoid corrosion or degradation. Regular inspection of crucibles for cracks, defects, or signs of wear is important to prevent unexpected failures during the evaporation process. Follow the manufacturer's recommendations for any specific maintenance procedures, such as annealing or surface treatment, to prolong the crucible's lifespan.
View more faqs for this product

4.9

out of

5

The Boron Nitride crucible is perfect for my high-temperature experiments. It can withstand extreme temperatures and is chemically inert, so I can use it with a variety of materials.

Yana Bogdanova

4.7

out of

5

This crucible is a game-changer for my research. It's durable, easy to clean, and provides excellent thermal insulation. Highly recommended!

Dr. Rajeev Sharma

4.8

out of

5

The quality of this crucible is top-notch. It's made from high-purity BN, which ensures consistent and reliable performance. I'm very satisfied with my purchase.

Ing. Juan Carlos

4.6

out of

5

I was impressed with the fast delivery of this crucible. It arrived well-packaged and in perfect condition. Thank you for the excellent service!

Ms. Sarah Mitchell

4.9

out of

5

The Boron Nitride crucible exceeded my expectations. It's incredibly durable and has held up well under extreme conditions. I highly recommend it for demanding applications.

Dr. Ahmed Al-Saffar

4.7

out of

5

This crucible is a great value for the price. It's well-made and performs just as well as more expensive brands. I'm very happy with my purchase.

Mr. Nguyen Van

4.8

out of

5

I'm very impressed with the technological advancements of this crucible. It's designed to withstand extreme temperatures and provide excellent thermal insulation. It's a must-have for any laboratory.

Ms. Maria Rodriguez

4.6

out of

5

The Boron Nitride crucible is a great addition to my lab. It's easy to use and clean, and it provides excellent results. I highly recommend it to other researchers.

Dr. Samuel Cohen

4.9

out of

5

This crucible is simply amazing! It can withstand temperatures up to 2000 degrees Celsius and is resistant to most corrosive chemicals. It's a must-have for any high-temperature application.

Mr. Li Wei

4.7

out of

5

I'm very happy with the performance of this crucible. It's durable, reliable, and provides excellent thermal insulation. I would definitely recommend it to others.

Ms. Amina Patel

4.8

out of

5

The Boron Nitride crucible is a valuable asset to my lab. It's perfect for high-temperature experiments and provides excellent results. I highly recommend it to other scientists.

Dr. Carlos Sanchez

4.6

out of

5

This crucible is a great investment for any laboratory. It's durable, easy to use, and provides excellent results. I'm very happy with my purchase.

Ms. Fatima Bint Hassan

4.9

out of

5

The Boron Nitride crucible is a game-changer for my research. It's allowed me to achieve results that I couldn't have with other crucibles. I highly recommend it to other researchers.

Dr. David Miller

PDF of KM-D01

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Thermal Evaporation Sources

Download

Catalog of Evaporation Crucible

Download

Catalog of Boron Nitride Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Shop Boron Nitride materials for your laboratory needs at reasonable prices. We tailor materials to your requirements with varying purities, shapes, and sizes. Choose from a wide range of specifications and sizes.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Boron (B) materials tailored to your specific lab needs. Our products range from sputtering targets to 3D printing powders, cylinders, particles, and more. Contact us today.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide materials at reasonable prices for your lab needs. We customize BC materials of different purities, shapes, and sizes, including sputtering targets, coatings, powders, and more.

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal boron nitride (HBN) gaskets are made from hot-pressed boron nitride blanks. Mechanical properties similar to graphite, but with excellent electrical resistance.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Lithium battery tab tape

Lithium battery tab tape

PI polyimide tape, generally brown, also known as gold finger tape, high temperature resistance 280 ℃, to prevent the influence of heat sealing of soft pack battery lug glue, suitable for soft pack battery tab position glue.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.