The particle size of a colloid mill can vary depending on several factors.
These factors include the adjustment of the mill, the feed particle size, and the material being processed.
On average, colloid mills can achieve particle sizes ranging from 1 to 25 microns in the processed fluid.
The operation of a colloid mill involves feeding the material into a vortex created by the mill.
The material accelerates along an engineered tangent circle.
Strong velocity gradients near the jet cause the suspended particles to collide with each other.
This collision leads to attrition and collision, resulting in the reduction of particle size.
The size reduction occurs through high-velocity collisions between particles of the process material itself, without the involvement of grinding media.
The feed particle size is critical and is restricted by the size of the feed injector.
For mills of 200-300 mm, the maximum feed size can be 1.5 mm.
Smaller mills have correspondingly finer feed sizes.
In terms of achieving smaller particle sizes, jet mills can generally grind particles in the range of 1 to 10 microns on average, which is also referred to as micronization.
However, some product formulations require even smaller particles, as small as 200 nanometers.
Achieving these extremely small sizes may require increasing the power to the mill and the time the material spends in the milling chamber.
On the other hand, some products may require particles larger than 10 microns.
This can be accomplished by reducing the power to the mill or increasing the feed rate to the equipment.
Overall, colloid mills offer advantages such as the ability to perform particle size reduction, grinding, dispersing, and extracting of highly viscous materials.
They can handle stiff paste and heavier viscosity materials, transforming them from a solid to a liquid state.
Colloid mills also have various types, including vertical and horizontal mills, as well as cone mills and laboratory mills.
They provide high capacity output with minimum space requirements and are easy to clean.
The contact parts are made from high-quality stainless steel, and the operating parts can be easily dismantled and assembled.
In summary, the particle size achieved by a colloid mill can range from 1 to 25 microns, with the ability to achieve even smaller sizes with adjustments and increased milling time and power.
Continue exploring, consult our experts
Looking for high-quality colloid mills to achieve precise particle sizes in your lab? Look no further than KINTEK!
Our state-of-the-art equipment can achieve particle sizes ranging from 1 to 25 microns, with the capability of micronization down to 200 nanometers.
With our colloid mills, you have full control over particle size reduction, allowing you to tailor your experiments to your specific needs.
Don't settle for anything less than perfection - choose KINTEK for your laboratory equipment needs.
Contact us now for a quote!