Products Lab Consumables & Materials Optical Materials Alkali-free / Boro-aluminosilicate glass
Alkali-free / Boro-aluminosilicate glass

Optical Materials

Alkali-free / Boro-aluminosilicate glass

Item Number : KTOM-ABG

Price varies based on specs and customizations


standard thickness
0.3, 0.5, 0.7mm
Transmittance
400 – 2300nm
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Alkali-free / Boro-aluminosilicate glass

High borosilicate glass (also known as hard glass) is made by utilizing the conductive properties of glass at high temperature, through heating inside the glass to realize glass melting, and processed by advanced production technology, because the linear thermal expansion coefficient is (3.3 ±0.1)×10-6/K, also known as "borosilicate glass 3.3".Silicon has a lower refractive index than germanium and has a lower density that makes for less weighty optical designs.

Alkali-free/boroaluminosilicate glass, also known as borosilicate glass, is a type of glass that is composed of a combination of boron oxide (B₂O₃), aluminum oxide (Al₂O₃), and silicon dioxide (SiO₂). It is referred to as "alkali-free" because it does not contain alkali metal oxides like sodium oxide (Na₂O) or potassium oxide (K₂O), which are commonly found in other types of glass.

Detail & Parts

High borosilicate glass high temperature resistance
High borosilicate glass high temperature resistance
High borosilicate glass with strong light transmittance
High borosilicate glass with strong light transmittance
High borosilicate glass wavelength change chart
High borosilicate glass wavelength change chart

Special Properties 

  • Low alkali content (≤ 0.1%)
  • High thermal shock resistance
  • Smooth surface with low microroughness
  • Superior flatness and high surface quality
  • Small thermal coefficient of expansion

Applications of Alkali-free/boroaluminosilicate glass

  • Substrate glass for filter or mirror coatings
  • Substrates for "Chip on glass" (COG) applications
  • Thin-film substrates for electronics
  • Glass for active matrix flat panel displays (AMLCD)
  • Electroluminescence displays
  • Optical windows
  • Optics for sensor technology and optoelectronics

Provide customized services

Through the implementation of innovative and state-of-the-art melting processes, we have acquired extensive expertise in the development and manufacture of quality glass products, offering a wide range of optical glass products for a variety of commercial, industrial and scientific applications. The company provides various specifications of optical glass such as raw glass, cut parts and finished components, and cooperates closely with customers to customize products according to customer needs. With an unwavering commitment to quality, we ensure our customers receive the perfect solution tailored to their requirements.

For further quotations, please contact us.

FAQ

What are the main types of glass materials available?

The main types of glass materials include Alkali-free/Boro-aluminosilicate glass, Optical ultra-clear glass, K9 quartz glass, Soda-lime optical glass, High-temperature resistant optical quartz glass, Glass oscillating beads, High borosilicate glass stirring rods, Glassy carbon sheets, Infrared silicon lenses, Glassy carbon electrodes, Glass tissue grinders, Micro-injectors, Lab pellet presses, and PTFE measuring cylinders.

What are the main types of glass substrates?

The main types of glass substrates include soda-lime glass, sapphire, boroaluminosilicate glass, optical quartz glass, K9 glass, CaF2 substrate, magnesium fluoride crystal substrate, and silicon.

What are optical quartz plates?

Optical quartz plates are transparent, durable components made from high-purity quartz crystal. They are widely used in various industries due to their excellent thermal and chemical resistance.

What is the difference between borosilicate glass and aluminosilicate glass?

Aluminosilicate glass has aluminum oxide in its composition. It is similar to borosilicate glass but it has greater chemical durability and can withstand higher operating temperatures. Compared to borosilicate, aluminosilicates are more difficult to fabricate.

What are the different types of borosilicate glass?

Borosilicate glass is sold under various trade names, including Borosil, Duran, Pyrex, Glassco, Supertek, Suprax, Simax, Bellco, Marinex (Brazil), BSA 60, BSC 51 (by NIPRO), Heatex, Endural, Schott, Refmex, Kimax, Gemstone Well, United Scientific, and MG (India).

What are the applications of borosilicate glass?

Borosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils. It is also used in optical applications due to its clarity and durability.

What is soda-lime glass used for?

Soda-lime glass is widely used as an insulating substrate for thin and thick film deposition in various applications due to its uniform thickness and exceptionally flat surfaces.

What are the main types of optical quartz plates?

The main types of optical quartz plates include JGS1, JGS2, and JGS3 quartz plates, high-temperature resistant optical quartz glass sheets, K9 quartz sheets, optical ultra-clear glass sheets, diamond optical windows, MgF2 magnesium fluoride crystal substrates, infrared silicon lenses, quartz electrolytic cells, barium fluoride substrates, CaF2 substrates, infrared transmission coating sapphire sheets, ITO/FTO glass storage racks, float soda-lime optical glass, borosilicate glass, glassy carbon sheets, and high-purity silicon dioxide materials.

What are the advantages of using optical glass in laboratory settings?

Optical glass is manufactured using specific chemicals that enhance properties crucial for optics applications, such as clarity, refractive index, and durability. It is widely used in telecommunications, astronomy, and other fields requiring precise light manipulation.

What are the advantages of using sapphire substrates?

Sapphire substrates offer unparalleled chemical, optical, and physical properties. They are highly resistant to thermal shocks, high temperatures, sand erosion, and water, making them ideal for demanding applications.

What are the applications of optical quartz plates?

Optical quartz plates are used in a variety of applications, including telecommunications, astronomy, laboratory settings, high-power IR laser and microwave windows, VUV and infrared spectroscopy, near-infrared range applications, electrochemical experiments, and more.

How is soda-lime glass manufactured, and what are its applications?

Soda-lime glass is created by floating molten glass on molten tin, ensuring uniform thickness and exceptionally flat surfaces. It is widely favored as an insulating substrate for thin/thick film deposition in laboratory settings.

Why is boroaluminosilicate glass suitable for laboratory glassware and cooking utensils?

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

What are the advantages of using optical quartz plates?

Optical quartz plates offer several advantages, such as excellent thermal and chemical resistance, high clarity, tailored refractive properties, resistance to laser damage, stability in various environments, and versatility in different industries.

What makes K9 quartz glass suitable for optical applications?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, including high clarity and precise refractive index, making it ideal for various optical applications.

What are the applications of optical quartz glass sheets?

Optical quartz glass sheets are used for precise light manipulation in various fields including telecommunications, astronomy, and optical technology due to their exceptional clarity and tailored refractive properties.

How are optical quartz plates manufactured?

Optical quartz plates are typically manufactured from high-purity quartz crystal. Depending on the specific type, they may undergo various processes to enhance their optical properties, such as coating or shaping to meet precise specifications.

What are the benefits of using PTFE measuring cylinders in laboratories?

PTFE cylinders are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance, and maintain a low coefficient of friction, ensuring ease of use and cleaning. They are a rugged alternative to traditional glass cylinders.

What makes K9 glass special?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, making it suitable for various optical applications.

What makes K9 quartz sheets unique?

K9 quartz sheets, also known as K9 crystal, are a type of optical borosilicate crown glass known for their exceptional optical properties. They are widely used in optical applications due to their high clarity and tailored refractive properties.

Why is glass a preferred material for laboratory equipment?

Glass has a smooth surface that offers an excellent view of what is going on inside the equipment, enhancing the efficiency of inspection in each process. It is also clear and provides good optical properties, making it a preferred material for laboratory equipment.

What is a CaF2 window used for?

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable, and resistant to laser damage, making them suitable for a wide range of optical applications.

What is the role of optical quartz plates in telecommunications?

Optical quartz plates are used in telecommunications for precise light manipulation, ensuring clear signal transmission and enhancing the performance of optical devices.

What are the properties of magnesium fluoride crystal substrates?

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

How do optical quartz plates contribute to laboratory research?

Optical quartz plates are essential in laboratory research for their durability, chemical resistance, and precise optical properties. They are used in various experiments and setups that require high-quality optical components.

What is silicon used for in the near-infrared range?

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

What are glass vibration beads used for in laboratories?

Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation, making them useful in various experimental setups.
View more faqs for this product

4.8

out of

5

The speed of delivery and the quality of the Alkali-free / Boro-aluminosilicate glass were impressive. I'll definitely recommend.

Anika Chatterjee

4.9

out of

5

The value for money of the Alkali-free / Boro-aluminosilicate glass is incredible! It's a steal for the quality you get.

Liam Jones

4.7

out of

5

The Alkali-free / Boro-aluminosilicate glass is top-notch! It's durable and has lasted me through multiple experiments.

Olivia Rodriguez

4.8

out of

5

The technological advancement of the Alkali-free / Boro-aluminosilicate glass is remarkable. It's a game-changer in the lab.

Noah Brown

4.9

out of

5

I'm amazed by the speed of delivery of the Alkali-free / Boro-aluminosilicate glass. It arrived before I knew it!

Emma Garcia

4.7

out of

5

The value for money of the Alkali-free / Boro-aluminosilicate glass is outstanding. It's worth every penny.

Alexander Kim

4.8

out of

5

The durability of the Alkali-free / Boro-aluminosilicate glass is unmatched. It's built to last.

Isabella Johnson

4.9

out of

5

The Alkali-free / Boro-aluminosilicate glass is at the forefront of technology. It's a must-have for any lab.

Elijah Williams

4.7

out of

5

I'm highly satisfied with the speed of delivery of the Alkali-free / Boro-aluminosilicate glass. It's a testament to their efficiency.

Amelia Davies

4.8

out of

5

The value for money of the Alkali-free / Boro-aluminosilicate glass is unbeatable. It's an excellent investment.

Benjamin Miller

4.9

out of

5

The Alkali-free / Boro-aluminosilicate glass is exceptionally durable. It's a reliable choice for any laboratory.

Sofia Wilson

4.7

out of

5

The technological advancement of the Alkali-free / Boro-aluminosilicate glass is awe-inspiring. It's a game-changer in the scientific field.

Jackson Moore

PDF - Alkali-free / Boro-aluminosilicate glass

Download

Catalog of Optical Materials

Download

Catalog of Glass Material

Download

Catalog of Glass Substrate

Download

Catalog of Optical Quartz Plates

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

Float soda-lime optical glass for laboratory

Float soda-lime optical glass for laboratory

Soda-lime glass, widely favored as an insulating substrate for thin/thick film deposition, is created by floating molten glass on molten tin. This method ensures uniform thickness and exceptionally flat surfaces.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Aluminum Boride (AlB2) Sputtering Target / Powder / Wire / Block / Granule

Aluminum Boride (AlB2) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Aluminum Boride materials for your lab? Our custom-tailored AlB2 products come in various shapes and sizes to suit your needs. Check out our range of sputtering targets, coating materials, powders, and more.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Single and double-sided coated glass sheet/K9 quartz sheet

Single and double-sided coated glass sheet/K9 quartz sheet

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties.

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Boron (B) materials tailored to your specific lab needs. Our products range from sputtering targets to 3D printing powders, cylinders, particles, and more. Contact us today.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

Optical quartz plate JGS1 / JGS2 / JGS3

Optical quartz plate JGS1 / JGS2 / JGS3

The quartz plate is a transparent, durable, and versatile component widely used in various industries. Made from high-purity quartz crystal, it exhibits excellent thermal and chemical resistance.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Aluminum Oxide materials for your lab? We offer high-quality Al2O3 products at affordable prices with customizable shapes and sizes to meet your specific needs. Find sputtering targets, coating materials, powders, and more.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

400-700nm wavelength Anti reflective / AR coating glass

400-700nm wavelength Anti reflective / AR coating glass

AR coatings are applied on optical surfaces to reduce reflection. They can be a single layer or multiple layers that are designed to minimize reflected light through destructive interference.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

Optical Windows

Optical Windows

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

Related Articles

Glassware vs. Plasticware - Which is the Better Choice for Your Needs?

Glassware vs. Plasticware - Which is the Better Choice for Your Needs?

Both glassware and plasticware have their own advantages and disadvantages, and the choice between the two will depend on the specific needs of your laboratory.

Find out more
Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Discover the remarkable characteristics and diverse applications of optical quartz plates, including their superior ultraviolet transmission, thermal stability, and use in lenses, lighting devices, and semiconductor manufacturing.

Find out more
How To Clean Laboratory Glassware - Part 1

How To Clean Laboratory Glassware - Part 1

Cleaning laboratory glassware isn't as simple as washing the dishes. Here's how to wash your glassware so that you won't ruin your chemical solution or laboratory experiment.

Find out more
How to Save Money When Buying a Rotary Evaporator (Rotavapor)

How to Save Money When Buying a Rotary Evaporator (Rotavapor)

A rotary evaporator, also known as a rotavapor, is a laboratory equipment commonly used to remove solvents from a sample. It works by rotating the sample flask to create a thin film of the solvent, which is then evaporated.

Find out more
Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Discover the versatility of optical quartz plates, exploring their uses in various industries, key specifications, and factors that differentiate them from glass. Gain insights into their applications in ultraviolet transmission, precision optics, and more.

Find out more
Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Explore the world of atmosphere furnaces with our detailed guide. Learn about their types, applications in metallurgy and beyond, and the benefits they offer for precise material heat treatment.

Find out more