Products Lab Consumables & Materials Lab Materials High Purity Europium (Eu) Sputtering Target / Powder / Wire / Block / Granule
High Purity Europium (Eu) Sputtering Target / Powder / Wire / Block / Granule

Lab Materials

High Purity Europium (Eu) Sputtering Target / Powder / Wire / Block / Granule

Item Number : LM-EU

Price varies based on specs and customizations


Chemical Formula
Eu
Purity
3N
Shape
discs / wire / block / powder / plates / column targets / step target / custom-made
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

We specialize in producing and customizing Europium (Eu) materials of various purities, shapes, and sizes to cater to your specific needs, all at reasonable prices.

We offer a wide range of sputtering targets (including circular, square, tubular, and irregular shapes), coating materials, cylinders, cones, particles, foils, powders, 3D printing powders, nanometer powders, wire rods, ingots, and blocks, available in different specifications and sizes.

Details

Europium (Eu) Sputtering Target
Europium (Eu) Sputtering Target

About Europium (Eu)

Europium is primarily used for its unique luminescent properties. Excitation of the europium atom by absorption of ultra-violet radiation can result in specific energy level transitions within the atom, creating an emission of visible radiation. In energy-efficient fluorescent lighting, europium provides not only the necessary red but also blue. Several commercial blue phosphors are based on europium. Its luminescence is also valuable in medical, surgical, and biochemical applications.

Europium is available in various forms, including metal and compounds with purities ranging from 99% to 99.999% (ACS grade to ultra-high purity). Elemental or metallic forms include pellets, rods, wires, and granules for evaporation source material purposes. Europium oxide is available in powder and dense pellet form for optical coating and thin film applications. Oxides tend to be insoluble. Europium fluorides are another insoluble form for uses in which oxygen is undesirable, such as metallurgy, chemical and physical vapor deposition, and some optical coatings.

Europium is also available in soluble forms, including chlorides, nitrates, and acetates, which can be manufactured as solutions at specified stoichiometries.

Ingredient Quality Control

Raw material composition analysis
Through the use of equipment such as ICP and GDMS, the content of metal impurities is detected and analyzed to ensure that it meets the purity standard;

Non-metallic impurities are detected by equipment such as carbon and sulfur analyzers, nitrogen and oxygen analyzers.
Metallographic flaw detection analysis
The target material is inspected using flaw detection equipment to ensure that there are no defects or shrinkage holes inside the product;

Through metallographic testing, the internal grain structure of the target material is analyzed to ensure that the grains are fine and dense.
Appearance and dimension inspection
Product dimensions are measured using micrometers and precision calipers to ensure compliance with drawings;

The surface finish and cleanliness of the product are measured using a surface cleanliness meter.

Conventional Sputtering Target Sizes

Preparation process
hot isostatic pressing, vacuum melting, etc.
Sputtering target shape
plane sputtering target, multi-arc sputtering target, step sputtering target, special-shaped sputtering target
Round sputtering target size
Diameter: 25.4mm / 50mm / 50.8mm / 60mm / 76.2mm / 80mm / 100mm / 101.6mm / 152.4mm
Thickness: 3mm / 4mm / 5mm / 6mm / 6.35mm
Size can be customized.
Square sputtering target size
50×50×3mm / 100×100×4mm / 300×300×5mm, size can be customized

Available Metal Forms

Metal Forms Details

We manufacture almost all the metals listed on the periodic table in a wide range of forms and purities, as well as standard sizes and dimensions. We can also produce custom-made products to meet specific customer requirements, such as size, shape, surface area, composition, and more. The following list provides a sample of the forms we offer, but it is not exhaustive. If you need laboratory consumables, please contact us directly to request a quote.

  • Flat/Planar Forms: Board, Film, Foil, Microfoil, Microleaf, Paper, Plate, Ribbon, Sheet, Strip, Tape, Wafer
  • Preformed Shapes: Anodes, Balls, Bands, Bars, Boats, Bolts, Briquettes, Cathodes, Circles, Coils, Crucibles, Crystals, Cubes, Cups, Cylinders, Discs, Electrodes, Fibers, Filaments, Flanges, Grids, Lenses, Mandrels, Nuts, Parts, Prisms, Pucks, Rings, Rods, Shapes, Shields, Sleeves, Springs, Squares, Sputtering Targets, Sticks, Tubes, Washers, Windows, Wires
  • Microsizes: Beads, Bits, Capsules, Chips, Coins, Dust, Flakes, Grains, Granules, Micropowder, Needles, Particles, Pebbles, Pellets, Pins, Pills, Powder, Shavings, Shot, Slugs, Spheres, Tablets
  • Macrosizes: Billets, Chunks, Cuttings, Fragments, Ingots, Lumps, Nuggets, Pieces, Punchings, Rocks, Scraps, Segments, Turnings
  • Porous and Semi-Porous: Fabric, Foam, Gauze, Honeycomb, Mesh, Sponge, Wool
  • Nanoscale: Nanoparticles, Nanopowders, Nanofoils, Nanotubes, Nanorods, Nanoprisms
  • Others: Concentrate, Ink, Paste, Precipitate, Residue, Samples, Specimens

KinTek specializes in the manufacturing of high-purity and ultra-high-purity materials with a purity range of 99.999% (5N), 99.9999% (6N), 99.99995% (6N5), and in some cases, up to 99.99999% (7N). Our materials are available in specific grades, including UP/UHP, semiconductor, electronic, deposition, fiber optic, and MBE grades. Our high-purity metals, oxides, and compounds are specifically crafted to meet the rigorous demands of high-technology applications and are ideal for use as dopants and precursor materials for thin film deposition, crystal growth of semiconductors, and synthesis of nanomaterials. These materials find use in advanced microelectronics, solar cells, fuel cells, optical materials, and other cutting-edge applications.

Packaging

We use vacuum packaging for our high-purity materials, and each material has specific packaging tailored to its unique characteristics. For instance, our Hf sputter target is externally tagged and labeled to facilitate efficient identification and quality control. We take great care to prevent any damage that could occur during storage or transportation.

FAQ

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is sputtering target?

A sputtering target is a material used in the process of sputter deposition, which involves breaking up the target material into tiny particles that form a spray and coat a substrate, such as a silicon wafer. Sputtering targets are typically metallic elements or alloys, although some ceramic targets are available. They come in a variety of sizes and shapes, with some manufacturers creating segmented targets for larger sputtering equipment. Sputtering targets have a wide range of applications in fields such as microelectronics, thin film solar cells, optoelectronics, and decorative coatings due to their ability to deposit thin films with high precision and uniformity.

What are high purity materials?

High purity materials refer to substances that are free from impurities and possess a high level of chemical homogeneity. These materials are essential in various industries, particularly in the field of advanced electronics, where impurities can significantly affect the performance of devices. High purity materials are obtained through various methods, including chemical purification, vapor-phase deposition, and zone refining. In the preparation of electronic grade single crystal diamond, for example, a high-purity raw material gas and an efficient vacuum system are necessary to achieve the desired level of purity and homogeneity.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

What are high purity metals?

High purity metals are single element materials with minimal impurities, making them ideal for use in research, development, and production of advanced technologies. These metals are used in the creation of advanced ceramics, electronic sensors, high-precision lenses and optics, LEDs, lasers, thermal barrier coatings, plasma screens, and more. KINTEK offers a diverse range of high-purity metals and binary and ternary metal compounds in various forms, compositions, dispersions, particle sizes, and weights for research and commercial applications. Strategic special metals are used in high-tech applications and can be expensive due to their elaborate processing.

How are sputtering targets made?

Sputtering targets are made using a variety of manufacturing processes depending on the properties of the target material and its application. These include vacuum melting and rolling, hot-pressed, special press-sintered process, vacuum hot-pressed, and forged methods. Most sputtering target materials can be fabricated into a wide range of shapes and sizes, with circular or rectangular shapes being the most common. Targets are usually made from metallic elements or alloys, but ceramic targets can also be used. Compound sputtering targets are also available, made from a variety of compounds including oxides, nitrides, borides, sulphides, selenides, tellurides, carbides, crystalline, and composite mixtures.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What are high purity metals used for?

High purity metals are used in various advanced technologies that require specific properties, performance and quality. They are used to create fluorescent lighting, plasma screens, LEDs, high-precision lenses and optics, electronic sensors, advanced ceramics, thermal barrier coatings, lasers, and more. These metals are also used in the production of high-quality magnetic, thermoelectric, phosphor and semiconducting materials. KINTEK offers a diverse portfolio of high-purity metals, binary and ternary metal compounds, magnetic alloys, metal oxides, nanomaterials, and organometallic precursors in various forms, compositions, dispersions, particle sizes and weights for all research and commercial applications.

What is sputtering target used for?

Sputtering targets are used in a process called sputtering to deposit thin films of a material onto a substrate using ions to bombard the target. These targets have a wide range of applications in various fields, including microelectronics, thin film solar cells, optoelectronics, and decorative coatings. They allow for the deposition of thin films of materials onto a variety of substrates with high precision and uniformity, making them an ideal tool for producing precision products. Sputtering targets come in various shapes and sizes and can be specialized to meet the specific requirements of the application.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are the benefits of using high-purity metals?

Using high-purity metals offers several benefits. First, they provide consistent and reliable performance due to the absence of impurities that can cause variations in material properties. Second, high-purity metals enable the production of high-quality and high-performance products, ensuring better functionality and durability. Third, their low impurity levels reduce the risk of contamination in sensitive applications. High-purity metals also exhibit improved electrical conductivity, thermal conductivity, and corrosion resistance. Additionally, they are often preferred for their enhanced adhesion properties, making them suitable for various coating and thin film deposition processes.

What are sputtering targets for electronics?

Sputtering targets for electronics are thin discs or sheets of materials such as aluminum, copper, and titanium that are used to deposit thin films onto silicon wafers to create electronic devices like transistors, diodes, and integrated circuits. These targets are used in a process called sputtering, in which atoms of the target material are physically ejected from the surface and deposited onto a substrate by bombarding the target with ions. Sputtering targets for electronics are essential in the production of microelectronics and typically require high precision and uniformity to ensure quality devices.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

Which industries commonly use high-purity metals?

High-purity metals find application in a wide range of industries. The semiconductor and electronics industries extensively use high-purity metals for integrated circuits, microprocessors, and other electronic components. The aerospace industry relies on high-purity metals for their lightweight and high-strength properties. Optics and photovoltaic industries utilize high-purity metals for precision optics and solar cells. High-purity metals also play a significant role in medical devices, automotive components, research laboratories, and advanced manufacturing processes.

What is the lifetime of a sputtering target?

The lifetime of a sputtering target depends on factors such as the material composition, purity, and the specific application it is being used for. Generally, targets can last for several hundred to a few thousand hours of sputtering, but this can vary widely depending on the specific conditions of each run. Proper handling and maintenance can also extend the lifetime of a target. In addition, the use of rotary sputtering targets can increase runtimes and reduce the occurrence of defects, making them a more cost-effective option for high volume processes.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

View more faqs for this product

4.8

out of

5

I'm impressed with the swift delivery of my Europium sputtering target. It arrived within days, allowing me to resume my research without delay.

Nelson DaCosta

4.9

out of

5

The Europium sputtering target I received is of exceptional quality. It's evident that KINTEK SOLUTION utilizes top-notch production techniques.

Ainsley Rose

4.7

out of

5

I've been using KINTEK SOLUTION's Europium sputtering target for months now, and it shows no signs of degradation. Its durability is truly remarkable.

Eamon Garcia

4.8

out of

5

The Europium powder I purchased from KINTEK SOLUTION is exceptionally fine and consistent. It's perfect for my research applications.

Beatrice Walker

4.9

out of

5

The Europium wire I received from KINTEK SOLUTION is incredibly pliable and easy to work with. It's a pleasure to use in my experiments.

Finnley Patel

4.7

out of

5

I'm thoroughly impressed with the Europium block I purchased from KINTEK SOLUTION. Its high purity and density make it ideal for my research.

Harper Lewis

4.8

out of

5

The Europium granules I received from KINTEK SOLUTION are of impeccable quality. They're precisely the right size and purity for my experiments.

Grayson Moore

4.9

out of

5

I've been using KINTEK SOLUTION's Europium sputtering target for weeks now, and it consistently delivers exceptional results. I highly recommend it.

Mia Murphy

4.7

out of

5

The Europium powder I purchased from KINTEK SOLUTION is of unmatched quality. It's incredibly pure and consistent, making it ideal for my research.

Oliver Harris

4.8

out of

5

I'm thoroughly impressed with the Europium wire I received from KINTEK SOLUTION. It's highly pliable and easy to work with, making it a pleasure to use.

Amelia White

4.9

out of

5

The Europium block I purchased from KINTEK SOLUTION is of exceptional quality. Its high purity and density make it perfect for my research applications.

Lucas Brown

4.7

out of

5

I'm extremely satisfied with the Europium granules I received from KINTEK SOLUTION. They're precisely the right size and purity for my experiments.

Isabella Garcia

4.8

out of

5

KINTEK SOLUTION's Europium sputtering target has exceeded my expectations. It's incredibly durable and produces consistent results, making it an invaluable tool in my research.

Jackson Miller

4.9

out of

5

The Europium powder I purchased from KINTEK SOLUTION is of remarkable quality. It's extremely fine and consistent, making it ideal for my research applications.

Ava Johnson

4.7

out of

5

I'm thoroughly impressed with the Europium wire I received from KINTEK SOLUTION. It's highly pliable and easy to work with, making it a pleasure to use.

Liam Jones

4.8

out of

5

The Europium block I purchased from KINTEK SOLUTION is of exceptional quality. Its high purity and density make it perfect for my research applications.

Sophia Smith

4.9

out of

5

I'm extremely satisfied with the Europium granules I received from KINTEK SOLUTION. They're precisely the right size and purity for my experiments.

Ethan Williams

4.7

out of

5

KINTEK SOLUTION's Europium sputtering target has exceeded my expectations. It's incredibly durable and produces consistent results, making it an invaluable tool in my research.

Mia Rodriguez

PDF of LM-EU

Download

Catalog of Lab Materials

Download

Catalog of Sputtering Targets

Download

Catalog of High Purity Materials

Download

Catalog of Thin Film Deposition Materials

Download

Catalog of High Pure Metals

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Purity Erbium (Er) Sputtering Target / Powder / Wire / Block / Granule

High Purity Erbium (Er) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Erbium materials for your lab? Look no further than our affordable selection of tailored Erbium products, available in a range of purities, shapes, and sizes. Shop sputtering targets, coating materials, powders, and more today!

High Purity Cerium Oxide (CeO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cerium Oxide (CeO2) Sputtering Target / Powder / Wire / Block / Granule

High-quality Cerium Oxide (CeO2) materials for laboratory use at affordable prices. Customizable shapes & sizes. Sputtering targets, powders, 3D printing powders & more. Order now!

High Purity Erbium Oxide (Er2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Erbium Oxide (Er2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Erbium Oxide (Er2O3) materials at competitive prices for your laboratory needs. Our tailored solutions in different purities, shapes, and sizes suit unique requirements. Browse our sputtering targets, coatings, powders, and more.

High Purity Cerium (Ce) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cerium (Ce) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Cerium (Ce) materials for your laboratory? Our expertise lies in producing and tailoring materials of different purities, shapes, and sizes to suit your unique requirements. We offer a range of specifications and sizes, including sputtering targets, coating materials, powders, and more, all at reasonable prices.

High Purity Ytterbium (Yb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Ytterbium (Yb) Sputtering Target / Powder / Wire / Block / Granule

Looking for Ytterbium (Yb) materials for your laboratory? Our expertise is in producing tailored Yb materials of various purities, shapes, and sizes. Choose from our wide range of specifications and sizes, including sputtering targets, coating materials, powders, and more. Affordable prices.

High Purity Terbium (Tb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Terbium (Tb) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Terbium (Tb) materials at affordable prices for your laboratory needs. We offer custom shapes, sizes, and purities to fit your unique requirements. Explore our range of sputtering targets, coatings, powders, and more.

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Shop Erbium Fluoride (ErF3) materials of varying purities, shapes, and sizes for laboratory use. Our products include sputtering targets, coating materials, powders, and more. Browse now!

High Purity Neodymium (Nd) Sputtering Target / Powder / Wire / Block / Granule

High Purity Neodymium (Nd) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Neodymium (Nd) materials? Our lab-grade Nd materials come in a variety of purities, shapes, and sizes to suit your needs. Shop sputtering targets, coatings, particles, and more today.

High Purity Lanthanum (La) Sputtering Target / Powder / Wire / Block / Granule

High Purity Lanthanum (La) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Lanthanum (La) materials at affordable prices for your laboratory needs. Choose from our wide range of tailored purities, shapes, and sizes to suit your specific requirements. Explore our selection of sputtering targets, coating materials, powders, wire rods, and more.

High Purity Praseodymium (Pr) Sputtering Target / Powder / Wire / Block / Granule

High Purity Praseodymium (Pr) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Praseodymium (Pr) materials for laboratory use at reasonable prices. Our tailored products come in various sizes and purities, including sputtering targets, coating materials, and more. Contact us today.

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of high-quality Tellurium (Te) materials for laboratory use at affordable prices. Our expert team produces custom sizes and purities to fit your unique needs. Shop sputtering targets, powders, ingots, and more.

High Purity Dysprosium (Dy) Sputtering Target / Powder / Wire / Block / Granule

High Purity Dysprosium (Dy) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Dysprosium (Dy) materials for your lab? Our tailored products come in different purities, shapes, and sizes to meet your unique needs. Explore our range of sputtering targets, powders, ingots, and more at reasonable prices.

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium materials for laboratory use? Look no further! Our expertise lies in producing tailored Indium materials of varying purities, shapes, and sizes. We offer a wide range of Indium products to suit your unique requirements. Order now at reasonable prices!

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.

High Purity Yttrium Oxide (Y2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Yttrium Oxide (Y2O3) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Yttrium Oxide (Y2O3) materials tailored to your unique lab requirements. Our range includes sputtering targets, coating materials, powders, and more, all at reasonable prices.

High Purity Germanium (Ge) Sputtering Target / Powder / Wire / Block / Granule

High Purity Germanium (Ge) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality gold materials for your laboratory needs at affordable prices. Our custom-made gold materials come in various shapes, sizes, and purities to fit your unique requirements. Explore our range of sputtering targets, coating materials, foils, powders, and more.

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Chromium Oxide materials for your lab? Our range includes sputtering targets, powders, foils, and more, customized to your needs. Shop now for reasonable prices.

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Ytterbium Fluoride (YbF3) materials for your laboratory needs at affordable prices. We offer customized shapes and sizes, including sputtering targets, coating materials, powders, and more. Contact us today!

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Yttrium Fluoride (YF3) materials for laboratory use? Our affordable prices and expertise in producing custom shapes and sizes make us the ideal choice. Shop sputtering targets, coating materials, powders, and more today.

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Barium Titanate (LaF3) materials for your lab? Our tailored solutions fit your unique needs, with a wide range of shapes, sizes, and purities available. Explore our selection of sputtering targets, coating materials, powders, and more.