Products Thermal Equipment Electric Rotary Kiln Waste Tire Pyrolysis Plant for Recycling and Energy Recovery
Waste Tire Pyrolysis Plant for Recycling and Energy Recovery

Electric Rotary Kiln

Waste Tire Pyrolysis Plant for Recycling and Energy Recovery

Item Number : KWRE

Price varies based on specs and customizations


Host volume
31.8-46.2 cubic meters
Daily throughput
8-15 ton
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introductions

In order to solve waste tires, the waste tire refining equipment produced by our company adopts a new type of pyrolysis technology, which makes tires heated under the condition of complete anoxic or limited oxygen supply, so that high molecular polymers and organic additives are degraded into low molecular or small molecules compounds, thereby recovering tire oil, solid carbon and steel wire. The whole technological process ensures that no three wastes are produced: each equipment is equipped with a dust removal system to purify the flue gas generated during the operation of the equipment to ensure that the smoke and dust emissions meet the standards: the cooling system is used to cool high-temperature oil and gas, in which water can be recycled and no waste water is discharged; waste residue And carbon black, because it has been treated at a high temperature of more than 500 degrees, it has no toxicity, and carbon black can be refined, so it has a wide range of applications.

Waste tire refining equipment details

Waste tire refining equipment details

Waste tires and plastic pyrolysis process

The pyrolysis process does not require fine treatment of impurities such as sediment, water, and iron wire in the raw materials, and can directly load organic waste such as waste tires, rubber, and waste plastics into the pyrolysis processor. The mixture of oil and steam can be distilled, and the oil and gas can be condensed through a multi-stage separator and a cooling system to obtain fuel oil. The exhaust gas and dust from the pyrolysis processor enters the atomizing dust device for treatment and then discharges; part of the low-carbon chain non-condensable gas enters the combustible gas recovery system through the water seal, and is burned as fuel for the pyrolysis.

Applications

The waste tire pyrolysis plant has a wide range of applications in various industries, including:

  • Fuel production: The pyrolysis oil can be used as a fuel source in industries such as steel and iron, boiler factories, ceramics, power plants, chemical industries, hotels, and restaurants. It can also be used in generators to produce electricity.
  • Construction materials: The carbon black produced by the pyrolysis process can be used in the production of construction bricks, or as a fuel source.
  • Recycling: The steel wire recovered from the pyrolysis process can be sold directly or recycled to produce new steel products.

Waste tire refining equipment details

Process flow

Step 1: Feeding Put the waste tires into the pyrolysis axe. This process can be fed by manual feeding, flat conveyor feeding and hydraulic feeding machine and other feeding methods. Most factories usually use a hydraulic feeder to feed materials. Because of its high production efficiency, labor cost savings, and safety, it is widely used by many factories. Close the loading door after loading.
Step 2: Heating You can use tire oil or non-condensable gas (excess non-condensable gas produced during the pyrolysis process of several other equipment) to heat the reactor evenly. When the temperature reaches 80°C, some Gas precipitation (most of the gas at this time is water vapor, the liquefied part is water, and the non-liquefiable gas reaches the combustion chamber through the gas circulation system for combustion). When the temperature reaches 120°C, the combustible gas is precipitated and enters the gas distribution bag. The residual oil (contains part of the residue, which can be used as fuel to heat the main furnace) sinks to the residual oil tank, while the light oil automatically enters the condenser and liquefies. into light oil tanks. In this way, heavy oil and light oil (for heating and heating of the whole project) can be obtained.
Step 3: Non-condensable gas treatment Non-condensable gas (C1-C4 components) flowing into the oil tank together with the oil, the gas that cannot be condensed, has passed through two safety water seals (one for standby and one for use, water The role of the seal is to prevent the open flame from returning from the combustion chamber to meet the exhaust gas, and to prevent the gas from flowing back), and return to the heating chamber as fuel to heat the furnace. Therefore, at the beginning of equipment operation, the fuel is fuel oil or natural gas. When the temperature continues to rise, the non-condensable gas generated can be used as fuel.
Step 4: Smoke and dust treatment All the smoke and dust produced by combustion are pumped by the induced draft fan to the general dust removal system for treatment. The treated smoke and dust are white water vapor without black particles, and then the water vapor will enter the industrial purification device Carry out standard discharge treatment to ensure that the emitted smoke and dust discharge meets the emission standards required by environmental protection.
Step 5: Slag discharge After the slag is discharged, the pyrolysis process is over. The steel wire and carbon black we need are in the main furnace. The equipment adopts a fully automatic sealed slag discharge system. Furnace screw, slag outlet sealer and slag remover are used for slag removal. Carbon black is mainly used for ink, pigment, reinforcing agent, additive, etc.
Step 6: Steel wire The steel wire is pulled out by the tractor, which saves labor and achieves automatic production of equipment. When the steel wire is discharged, it cooperates with ventilation and dust removal equipment to ensure no dust.

Waste tire refining equipment detailsWaste tire refining equipment details

Technical Parameters

Model Host volume Daily throughput Total operating power
2600*6000 31.8 cubic meters 8 tons 16 kW/h
2600*6600 35 cubic meters 9 tons 16 kW/h
2800*6600 40.6 cubic meters 12 tons 18 kW/h
2800*7500 46.2 cubic meters 15 tons 20 kW/h

Advantages

  1. Integrated design, compact structure, complete integrity and guaranteed safety. The main body of the equipment adopts the standard Q345R special boiler steel plate (high temperature and oxidation resistant alloy steel) resistant to oxidation, corrosion, long life and safety.
  2. The equipment adopts a special anti-coking structure, which greatly solves the current situation that the sludge is coked and inconvenient to clean during the pyrolysis process.
  3. The main engine adopts the outer ring gear to rotate. In addition, the ring gear is formed once, which is strong and durable. It is more stable than the pin-pin sleeve transmission on the market. In case of damage, protect the host motor and reducer and prolong its service life.
  4. The welding of the main engine is (automatic submerged arc machine welding), and the welding is formed once, even and full.
  5. The cooling system includes: cooling pipes, air distribution bag, cooling pool, etc. It has the characteristics of large cooling area, good cooling effect and high oil collection rate.
  6. The waste residue after pyrolysis can meet the emission standard required by environmental protection the oil content of 2%.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is A Pyrolysis Furnace?

A pyrolysis furnace is a high-temperature furnace used to carry out the process of pyrolysis. Pyrolysis is a thermal decomposition process in which organic materials are heated to high temperatures in the absence of oxygen, resulting in the breakdown of complex molecules into simpler compounds or elemental constituents.

How Does A Pyrolysis Furnace Work?

Pyrolysis furnaces work by subjecting organic materials to high temperatures, typically in the range of 400-1000 degrees Celsius, in an oxygen-free environment. The absence of oxygen prevents combustion and allows for the thermal decomposition of the organic material. The furnace is designed to provide a controlled temperature environment and may incorporate heating elements, insulation, and gas flow control mechanisms. The organic material is loaded into the furnace chamber, heated to the desired temperature, and held at that temperature for a specific duration to facilitate the pyrolysis process. The resulting products, such as gases, liquids, and solids, can be collected and further processed or analyzed.

What Are The Applications Of Pyrolysis Furnaces?

Pyrolysis furnaces have various applications across different industries. They are commonly used in the fields of waste management and recycling to convert organic waste materials, such as plastics, rubber, or biomass, into valuable products like biochar, biofuels, or syngas. Pyrolysis furnaces are also utilized in the production of carbon fibers, activated carbon, and other carbon-based materials. Additionally, they are employed in research and development for studying the pyrolysis behavior of different materials, investigating reaction kinetics, and exploring novel applications for pyrolysis-derived products.

What Are The Advantages Of Using Pyrolysis Furnaces?

Pyrolysis furnaces offer several advantages for thermal decomposition processes. They allow for the controlled and precise heating of organic materials, ensuring consistent and reproducible results. The absence of oxygen prevents combustion and allows for the production of valuable pyrolysis products. Pyrolysis furnaces can handle a wide range of feedstock materials, including various waste streams, biomass, and plastics. They enable the conversion of these materials into useful products like biochar, biofuels, or syngas, contributing to waste reduction and resource recovery. The process is typically energy-efficient, and the resulting products can have various applications in energy, agriculture, and manufacturing industries.

What Factors Should Be Considered When Selecting A Pyrolysis Furnace?

Several factors should be considered when selecting a pyrolysis furnace. The desired temperature range and heating rate capability of the furnace should match the requirements of the pyrolysis process under consideration. The furnace size and capacity should be suitable for the volume of material to be processed. The control and monitoring features, such as temperature control accuracy and data logging capabilities, should be evaluated to ensure precise and reliable operation. Safety features, such as gas flow control, exhaust systems, and over-temperature protection, should be present to ensure safe operation. Finally, cost, maintenance requirements, and compatibility with other equipment or downstream processes should be taken into account when selecting a pyrolysis furnace.

What Safety Precautions Should Be Followed When Using A Pyrolysis Furnace?

When using a pyrolysis furnace, several safety precautions should be followed to ensure safe operation. The furnace should be placed in a well-ventilated area or equipped with proper exhaust systems to prevent the buildup of hazardous gases or fumes. It is important to carefully handle and load the organic materials to avoid potential hazards or accidents. The furnace should be operated within the recommended temperature range and not exceeded to prevent safety risks or damage to the equipment. Proper personal protective equipment, such as heat-resistant gloves, safety goggles, and fire-resistant clothing, should be worn when handling hot materials or operating the furnace. Regular maintenance and inspections should be carried out to ensure the integrity and functionality of the furnace. Lastly, it is crucial to follow the manufacturer's guidelines and instructions for safe operation and emergency shutdown procedures.
View more faqs for this product

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Electric Rotary Kiln Pyrolysis Furnace Plant Machine Calciner Small Rotary Kiln Rotating Furnace

Electric Rotary Kiln Pyrolysis Furnace Plant Machine Calciner Small Rotary Kiln Rotating Furnace

Electric rotary kiln - precisely controlled, it's ideal for calcination and drying of materials like lithium cobalate, rare earths, and non-ferrous metals.

Molecular Distillation Equipment Short Path Molecular Distillation

Molecular Distillation Equipment Short Path Molecular Distillation

Purify and concentrate natural products with ease using our molecular distillation process. With high vacuum pressure, low operating temperatures, and short heating times, preserve the natural quality of your materials while achieving excellent separation. Discover the advantages today!

Related Articles

6 Ways To activated carbon regeneration

6 Ways To activated carbon regeneration

Activated Carbon Regeneration: Thermal Regeneration Method, Biological Regeneration Method, Wet Oxidation Regeneration Method, Solvent Regeneration Method, Electrochemical Regeneration Method, Catalytic Wet Oxidation Method

Find out more
Mastering Rotary Kilns: A Comprehensive Guide to Operation, Applications, and Maintenance

Mastering Rotary Kilns: A Comprehensive Guide to Operation, Applications, and Maintenance

Unlock the potential of rotary kilns with our comprehensive guide. Learn about their versatile applications, from industrial sintering to organic combustion. Discover how they work, the difference between direct and indirect kilns, and the wide range of fuels they can utilize. Whether you're in cement production or specialized thermal processing, this guide will equip you with the knowledge to optimize your rotary kiln operations.

Find out more
Understanding the Warm Isostatic Pressing Technique

Understanding the Warm Isostatic Pressing Technique

Warm Isostatic Pressing (WIP) is a technique used in the manufacturing industry to form and press powder materials. It involves the use of a flexible material as the envelope die and hydraulic pressure as the medium to shape the material. Unlike traditional pressing methods, WIP utilizes a liquid medium that is heated and injected into a sealed pressing cylinder. This technique is particularly beneficial for materials with special temperature requirements or those that cannot be formed at room temperature.

Find out more
Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Discover the principles, applications, and advantages of electric rotary kiln pyrolysis furnaces. Explore various heating methods, factors affecting efficiency, and the environmental benefits of this technology.

Find out more
Biomass Pyrolysis Equipment A Sustainable Solution for Waste Management

Biomass Pyrolysis Equipment A Sustainable Solution for Waste Management

Biomass pyrolysis has gained increased attention as a sustainable solution for waste management and renewable energy generation.

Find out more
How Biomass Pyrolysis Machines Work A Comprehensive Overview

How Biomass Pyrolysis Machines Work A Comprehensive Overview

Biomass pyrolysis machines are designed to convert biomass materials into useful products such as biochar, bio-oil, and syngas.

Find out more
Biomass Pyrolysis An Effective Means of Producing Biofuels

Biomass Pyrolysis An Effective Means of Producing Biofuels

Biomass pyrolysis is a process that involves heating organic matter in the absence of oxygen to break it down into smaller molecules. This technology has gained popularity due to its potential to produce biofuels.

Find out more
The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

Different feedstocks have their own unique advantages and disadvantages for pyrolysis, which must be carefully considered when selecting the most suitable feedstock for a particular application.

Find out more

markdown to html 用

Find out more
How Biomass Pyrolysis Can Help Meet Growing Energy Demands

How Biomass Pyrolysis Can Help Meet Growing Energy Demands

Biomass pyrolysis is a process that converts organic material into energy-rich biofuels through heating in the absence of oxygen. This renewable energy source is becoming increasingly popular due to its environmental and economic benefits.

Find out more
Electric Rotary Kiln Pyrolysis Furnace: Design, Operation, and Applications

Electric Rotary Kiln Pyrolysis Furnace: Design, Operation, and Applications

Explore the comprehensive guide on electric rotary kiln pyrolysis furnaces, including their design, operation, efficiency factors, and diverse applications in industries like waste processing and biofuel production.

Find out more
The Importance of Activated Carbon Regeneration in Water Treatment

The Importance of Activated Carbon Regeneration in Water Treatment

In water treatment, activated carbon is often used as a means of removing unwanted contaminants, such as chlorine, chloramines, and organic matter, from drinking water and wastewater.

Find out more
6 Ways To activated carbon regeneration

6 Ways To activated carbon regeneration

Activated Carbon Regeneration: Thermal Regeneration Method, Biological Regeneration Method, Wet Oxidation Regeneration Method, Solvent Regeneration Method, Electrochemical Regeneration Method, Catalytic Wet Oxidation Method

Find out more
Mastering Rotary Kilns: A Comprehensive Guide to Operation, Applications, and Maintenance

Mastering Rotary Kilns: A Comprehensive Guide to Operation, Applications, and Maintenance

Unlock the potential of rotary kilns with our comprehensive guide. Learn about their versatile applications, from industrial sintering to organic combustion. Discover how they work, the difference between direct and indirect kilns, and the wide range of fuels they can utilize. Whether you're in cement production or specialized thermal processing, this guide will equip you with the knowledge to optimize your rotary kiln operations.

Find out more
Understanding the Warm Isostatic Pressing Technique

Understanding the Warm Isostatic Pressing Technique

Warm Isostatic Pressing (WIP) is a technique used in the manufacturing industry to form and press powder materials. It involves the use of a flexible material as the envelope die and hydraulic pressure as the medium to shape the material. Unlike traditional pressing methods, WIP utilizes a liquid medium that is heated and injected into a sealed pressing cylinder. This technique is particularly beneficial for materials with special temperature requirements or those that cannot be formed at room temperature.

Find out more
Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Discover the principles, applications, and advantages of electric rotary kiln pyrolysis furnaces. Explore various heating methods, factors affecting efficiency, and the environmental benefits of this technology.

Find out more
Biomass Pyrolysis Equipment A Sustainable Solution for Waste Management

Biomass Pyrolysis Equipment A Sustainable Solution for Waste Management

Biomass pyrolysis has gained increased attention as a sustainable solution for waste management and renewable energy generation.

Find out more
How Biomass Pyrolysis Machines Work A Comprehensive Overview

How Biomass Pyrolysis Machines Work A Comprehensive Overview

Biomass pyrolysis machines are designed to convert biomass materials into useful products such as biochar, bio-oil, and syngas.

Find out more