Knowledge How do you measure particle size in sieves? A Step-by-Step Guide to Accurate Sieve Analysis
Author avatar

Tech Team · Kintek Solution

Updated 6 hours ago

How do you measure particle size in sieves? A Step-by-Step Guide to Accurate Sieve Analysis

To measure particle size with sieves, you create a stack of sieves with progressively smaller mesh openings from top to bottom, place a pre-weighed, dry sample on the top sieve, and agitate the entire stack. This allows particles to fall through the apertures until they are retained by a sieve mesh they cannot pass. The final step is to weigh the material retained on each individual sieve to determine the particle size distribution of the original sample.

Sieve analysis does not measure the size of a single particle. Instead, it is a bulk analysis method that separates a material into different size fractions, allowing you to understand the overall distribution of particle sizes within a sample.

The Core Principle: Segregation by Size

Sieve analysis is a foundational technique in material science, geology, and engineering. Its goal is to characterize a granular material not by a single size, but by the proportion of particles that fall within different size ranges.

The Sieve Stack

A standard sieve analysis uses a nested stack of test sieves. The sieve with the largest mesh openings (the coarsest) is placed on top, with each subsequent sieve having a smaller opening size.

A solid collection pan is placed at the very bottom of the stack to catch the finest particles that pass through all the sieves. A lid is placed on the top sieve to prevent loss of material during agitation.

The Importance of Mesh Size

Sieve mesh is designated by a number that typically corresponds to the number of openings per linear inch (e.g., a "No. 200" sieve has 200 openings per inch).

This mesh number corresponds to a specific opening size, usually measured in millimeters (mm) or micrometers (µm). For example, a U.S. Standard No. 4 sieve has a 4.75 mm opening, while a No. 200 sieve has a 75 µm (or 0.075 mm) opening.

The Shaking Process: Agitation and Separation

Simply pouring a sample onto the stack is not enough. The stack must be agitated mechanically to ensure each particle has multiple opportunities to find and pass through the mesh openings.

Sieve shakers provide this action through various motions, such as tapping, orbital shaking, or electromagnetic vibration. The duration and intensity of the shaking are critical parameters that must be kept consistent for repeatable results.

The Step-by-Step Measurement Process

Achieving accurate and repeatable results requires a standardized and meticulous procedure.

Step 1: Sample Preparation

First, obtain a representative sample of the bulk material. The sample must then be dried completely, as moisture can cause particles to clump together and skew the results.

Weigh the total dry sample with high precision before beginning the analysis. This initial weight is your baseline for all subsequent calculations.

Step 2: Assembling the Sieve Stack

Clean and inspect each sieve for damage. Arrange them in descending order of opening size, with the coarsest sieve on top and the finest at the bottom, just above the collection pan.

Step 3: Sieving the Material

Carefully pour the pre-weighed sample into the top sieve. Secure the lid, place the entire stack into the sieve shaker, and run the machine for a predetermined amount of time (e.g., 10-15 minutes).

Step 4: Weighing and Recording

After shaking is complete, carefully weigh the material retained on each individual sieve and in the bottom pan. Record these weights meticulously alongside the corresponding sieve size.

As a critical quality check, the sum of all the individual weights should be very close to the initial total sample weight. A significant difference indicates a loss of material or a measurement error.

Step 5: Data Analysis and Reporting

For each sieve, calculate the weight percentage of the material retained. This is typically presented in a table or plotted on a graph as a particle size distribution curve.

This curve, often showing the cumulative percentage of material passing through each sieve, provides a powerful visual summary of the material's gradation.

Understanding the Trade-offs and Common Pitfalls

While simple in principle, sieve analysis is prone to errors if its limitations are not understood.

Particle Shape Assumption

Sieve analysis fundamentally assumes particles are spherical. Elongated or flat (flaky) particles may pass through an opening end-on or diagonally, reporting a smaller size than their largest dimension. This is the single biggest limitation of the method.

Sample Overloading

Placing too much material on a sieve can "blind" the mesh, meaning the surface becomes clogged with particles. This prevents smaller particles from having a chance to pass through, causing them to be incorrectly reported in a larger size fraction.

Insufficient Agitation

If the shaking time is too short or the intensity is too low, fine particles will not have sufficient opportunity to travel down through the stack to the appropriate sieve. This leads to an over-reporting of coarse particles.

Wear and Damage to Sieves

Sieves are precision instruments. Dented frames, stretched wires, or clogged mesh will produce inaccurate results. Regular inspection and calibration (or replacement) are essential for quality control.

Material Properties

Very fine powders (< 45 µm) are often difficult to sieve due to forces like static electricity or cohesion causing them to agglomerate or stick to the mesh. For these materials, other methods like laser diffraction or air jet sieving may be more appropriate.

Making the Right Choice for Your Goal

Sieve analysis is a powerful tool when applied correctly. Your goal determines your focus.

  • If your primary focus is routine quality control: Prioritize consistency above all else. Use a strictly defined procedure for sample weight, sieve stack, and shaking time to ensure your results are repeatable day after day.
  • If your primary focus is material specification: Adhere strictly to industry standards (like ASTM or ISO) that define the required sieve sizes and acceptable passing percentages for your application (e.g., concrete aggregate, soil classification).
  • If your primary focus is research and development: Understand the limitations, especially particle shape effects. Consider complementing your sieve analysis with another method, like image analysis, to get a more complete picture of your material's morphology.

Mastering sieve analysis gives you direct and reliable control over one of the most fundamental properties of any granular material.

Summary Table:

Sieve Analysis Step Key Action Critical Factor
1. Sample Prep Obtain & dry a representative sample Sample must be completely dry to prevent clumping
2. Stack Assembly Arrange sieves from largest to smallest openings Ensure sieves are clean and undamaged
3. Sieving Agitate stack with a sieve shaker Consistent time and intensity are crucial for repeatability
4. Weighing Weigh material retained on each sieve Sum of weights must match initial sample weight
5. Data Analysis Calculate weight percentages for each fraction Plot particle size distribution curve for visualization

Master Your Particle Size Analysis with KINTEK

Accurate sieve analysis is fundamental to your product quality and research integrity. KINTEK specializes in providing high-quality lab sieves, sieve shakers, and consumables designed for precision and durability. Whether you're in quality control ensuring material specifications or in R&D characterizing new materials, our equipment delivers the reliable, repeatable results you need.

Let us help you achieve superior particle analysis:

  • Upgrade your sieving accuracy with our certified test sieves.
  • Improve efficiency and consistency with our range of mechanical and electromagnetic sieve shakers.
  • Get expert support to select the right equipment for your specific application (e.g., ASTM/ISO standards).

Contact our lab equipment experts today to discuss your sieve analysis needs and ensure your processes are built on a foundation of precision.

Related Products

Laboratory Test Sieves and Vibratory Sieve Shaker Machine

Laboratory Test Sieves and Vibratory Sieve Shaker Machine

Efficiently process powders, granules, and small blocks with a high-frequency vibration sieve. Control vibration frequency, screen continuously or intermittently, and achieve accurate particle size determination, separation, and classification.

Three-dimensional electromagnetic sieving instrument

Three-dimensional electromagnetic sieving instrument

KT-VT150 is a desktop sample processing instrument for both sieving and grinding. Grinding and sieving can be used both dry and wet. The vibration amplitude is 5mm and the vibration frequency is 3000-3600 times/min.

Laboratory Wet Three-Dimensional Vibratory Sieve Shaker Machine

Laboratory Wet Three-Dimensional Vibratory Sieve Shaker Machine

The wet three-dimensional vibrating sieving instrument focuses on solving the sieving tasks of dry and wet samples in the laboratory. It is suitable for sieving 20g - 3kg dry, wet or liquid samples.

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

PTFE mesh sieve is a specialized test sieve designed for particle analysis in various industries, featuring a non-metallic mesh woven from PTFE filament. This synthetic mesh is ideal for applications where metal contamination is a concern . PTFE sieves are crucial for maintaining the integrity of samples in sensitive environments, ensuring accurate and reliable results in particle size distribution analysis.

Small Lab Rubber Calendering Machine

Small Lab Rubber Calendering Machine

Small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories, small-scale production facilities, and prototyping environments to create films, coatings, and laminates with precise thickness and surface finish.

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Efficient Laboratory Disc Rotary Mixer for Precise Sample Mixing, Versatile for Various Applications, DC Motor and Microcomputer Control, Adjustable Speed and Angle.

Heated Hydraulic Press Machine with Integrated Manual Heated Plates for Lab Use

Heated Hydraulic Press Machine with Integrated Manual Heated Plates for Lab Use

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Precision metallographic mounting machines for labs—automated, versatile, and efficient. Ideal for sample prep in research and quality control. Contact KINTEK today!

Manual Heated Hydraulic Press Machine with Heated Plates for Laboratory Hot Press

Manual Heated Hydraulic Press Machine with Heated Plates for Laboratory Hot Press

The Manual Heat Press is a versatile piece of equipment suitable for a variety of applications, operated by a manual hydraulic system that applies controlled pressure and heat to the material placed on the piston.

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

The desktop fast steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items. It efficiently sterilizes surgical instruments, glassware, medicines, and resistant materials, making it suitable for various applications.

Double Plate Heating Press Mold for Lab

Double Plate Heating Press Mold for Lab

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

Laboratory Homogenizer Mixer Benchtop 4 Inch PTFE Cavity Homogenizer

Laboratory Homogenizer Mixer Benchtop 4 Inch PTFE Cavity Homogenizer

4 inch PTFE cavity fully automatic laboratory homogenizer is a versatile laboratory equipment designed for efficient and precise homogenization of small samples. It features a compact design, allowing for easy glove box operation and space optimization.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Desktop Fast High Pressure Laboratory Autoclave Sterilizer 16L 24L for Lab Use

Desktop Fast High Pressure Laboratory Autoclave Sterilizer 16L 24L for Lab Use

The desktop fast steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items.

Small Injection Molding Machine for Lab Use

Small Injection Molding Machine for Lab Use

The small injection molding machinehas fast and stable movements; good controllability and repeatability, super energy saving; the product can be automatically dropped and formed; the machine body is low, convenient for feeding, easy to maintain, and no height restrictions on the installation site.

Small Jaw Crusher for Laboratory and Small Mines Efficient Flexible Affordable Laboratory Ore Crusher Coal Crusher

Small Jaw Crusher for Laboratory and Small Mines Efficient Flexible Affordable Laboratory Ore Crusher Coal Crusher

Discover the small jaw crusher for efficient, flexible, and affordable crushing in labs and small mines. Ideal for coal, ores, and rocks. Learn more now!

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Graphite Vacuum Furnace IGBT Experimental Graphitization Furnace

Graphite Vacuum Furnace IGBT Experimental Graphitization Furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Laboratory Quartz Tube Furnace Tubular RTP Heating Furnace

Laboratory Quartz Tube Furnace Tubular RTP Heating Furnace

Get lightning-fast heating with our RTP Rapid Heating Tube Furnace. Designed for precise, high-speed heating and cooling with convenient sliding rail and TFT touch screen controller. Order now for ideal thermal processing!


Leave Your Message