Products Lab Consumables & Materials Lab Materials High Purity Neodymium Oxide (Nd2O3) Sputtering Target / Powder / Wire / Block / Granule
High Purity Neodymium Oxide (Nd2O3) Sputtering Target / Powder / Wire / Block / Granule

Lab Materials

High Purity Neodymium Oxide (Nd2O3) Sputtering Target / Powder / Wire / Block / Granule

Item Number : LM-Nd2O3

Price varies based on specs and customizations


Chemical Formula
Nd2O3
Purity
4N
Shape
discs / wire / block / powder / plates / column targets / step target / custom-made
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

We offer Neodymium Oxide (Nd2O3) materials at reasonable prices. We specialize in producing and tailoring these materials to suit your unique requirements, offering various purities, shapes, and sizes.

Our product range includes sputtering targets (circular, square, tubular, irregular), coating materials, cylinders, cones, particles, foils, powders, 3D printing powders, nanometer powders, wire rods, ingots, and blocks in a variety of specifications and sizes.

Details

Neodymium Oxide (Nd2O3) Sputtering Target
Neodymium Oxide (Nd2O3) Sputtering Target

About Neodymium Oxide (Nd2O3)

Neodymium Oxide is a highly insoluble and thermally stable compound that finds application in glass, optic, and ceramic industries. Its primary uses include lasers, glass coloring, and dielectrics. The compound is formed when neodymium hydroxide or neodymium nitride is burned in air.

Around 7,000 metric tons of neodymium oxide are produced annually worldwide. While oxide compounds do not conduct electricity, certain perovskite-structured oxides are electronically conductive and find use in the cathodes of solid oxide fuel cells and oxygen generation systems.

Metal oxide compounds like neodymium oxide are basic anhydrides and can react with acids and strong reducing agents in redox reactions. Despite their low solubility in water, they are incredibly stable, making them ideal for a wide range of applications.

Neodymium Oxide is available in various forms, including pellets, pieces, sputtering targets, tablets, and nanopowder, and is generally readily available in most volumes. It finds use in everything from simple ceramic structures like clay bowls to advanced electronics and lightweight structural components in aerospace and electrochemical applications such as fuel cells in which they exhibit ionic conductivity.

Ingredient Quality Control

Raw material composition analysis
Through the use of equipment such as ICP and GDMS, the content of metal impurities is detected and analyzed to ensure that it meets the purity standard;

Non-metallic impurities are detected by equipment such as carbon and sulfur analyzers, nitrogen and oxygen analyzers.
Metallographic flaw detection analysis
The target material is inspected using flaw detection equipment to ensure that there are no defects or shrinkage holes inside the product;

Through metallographic testing, the internal grain structure of the target material is analyzed to ensure that the grains are fine and dense.
Appearance and dimension inspection
Product dimensions are measured using micrometers and precision calipers to ensure compliance with drawings;

The surface finish and cleanliness of the product are measured using a surface cleanliness meter.

Conventional Sputtering Target Sizes

Preparation process
hot isostatic pressing, vacuum melting, etc.
Sputtering target shape
plane sputtering target, multi-arc sputtering target, step sputtering target, special-shaped sputtering target
Round sputtering target size
Diameter: 25.4mm / 50mm / 50.8mm / 60mm / 76.2mm / 80mm / 100mm / 101.6mm / 152.4mm
Thickness: 3mm / 4mm / 5mm / 6mm / 6.35mm
Size can be customized.
Square sputtering target size
50×50×3mm / 100×100×4mm / 300×300×5mm, size can be customized

Available Metal Forms

Metal Forms Details

We manufacture almost all the metals listed on the periodic table in a wide range of forms and purities, as well as standard sizes and dimensions. We can also produce custom-made products to meet specific customer requirements, such as size, shape, surface area, composition, and more. The following list provides a sample of the forms we offer, but it is not exhaustive. If you need laboratory consumables, please contact us directly to request a quote.

  • Flat/Planar Forms: Board, Film, Foil, Microfoil, Microleaf, Paper, Plate, Ribbon, Sheet, Strip, Tape, Wafer
  • Preformed Shapes: Anodes, Balls, Bands, Bars, Boats, Bolts, Briquettes, Cathodes, Circles, Coils, Crucibles, Crystals, Cubes, Cups, Cylinders, Discs, Electrodes, Fibers, Filaments, Flanges, Grids, Lenses, Mandrels, Nuts, Parts, Prisms, Pucks, Rings, Rods, Shapes, Shields, Sleeves, Springs, Squares, Sputtering Targets, Sticks, Tubes, Washers, Windows, Wires
  • Microsizes: Beads, Bits, Capsules, Chips, Coins, Dust, Flakes, Grains, Granules, Micropowder, Needles, Particles, Pebbles, Pellets, Pins, Pills, Powder, Shavings, Shot, Slugs, Spheres, Tablets
  • Macrosizes: Billets, Chunks, Cuttings, Fragments, Ingots, Lumps, Nuggets, Pieces, Punchings, Rocks, Scraps, Segments, Turnings
  • Porous and Semi-Porous: Fabric, Foam, Gauze, Honeycomb, Mesh, Sponge, Wool
  • Nanoscale: Nanoparticles, Nanopowders, Nanofoils, Nanotubes, Nanorods, Nanoprisms
  • Others: Concentrate, Ink, Paste, Precipitate, Residue, Samples, Specimens

KinTek specializes in the manufacturing of high-purity and ultra-high-purity materials with a purity range of 99.999% (5N), 99.9999% (6N), 99.99995% (6N5), and in some cases, up to 99.99999% (7N). Our materials are available in specific grades, including UP/UHP, semiconductor, electronic, deposition, fiber optic, and MBE grades. Our high-purity metals, oxides, and compounds are specifically crafted to meet the rigorous demands of high-technology applications and are ideal for use as dopants and precursor materials for thin film deposition, crystal growth of semiconductors, and synthesis of nanomaterials. These materials find use in advanced microelectronics, solar cells, fuel cells, optical materials, and other cutting-edge applications.

Packaging

We use vacuum packaging for our high-purity materials, and each material has specific packaging tailored to its unique characteristics. For instance, our Hf sputter target is externally tagged and labeled to facilitate efficient identification and quality control. We take great care to prevent any damage that could occur during storage or transportation.

FAQ

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is sputtering target?

A sputtering target is a material used in the process of sputter deposition, which involves breaking up the target material into tiny particles that form a spray and coat a substrate, such as a silicon wafer. Sputtering targets are typically metallic elements or alloys, although some ceramic targets are available. They come in a variety of sizes and shapes, with some manufacturers creating segmented targets for larger sputtering equipment. Sputtering targets have a wide range of applications in fields such as microelectronics, thin film solar cells, optoelectronics, and decorative coatings due to their ability to deposit thin films with high precision and uniformity.

What are high purity materials?

High purity materials refer to substances that are free from impurities and possess a high level of chemical homogeneity. These materials are essential in various industries, particularly in the field of advanced electronics, where impurities can significantly affect the performance of devices. High purity materials are obtained through various methods, including chemical purification, vapor-phase deposition, and zone refining. In the preparation of electronic grade single crystal diamond, for example, a high-purity raw material gas and an efficient vacuum system are necessary to achieve the desired level of purity and homogeneity.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

How are sputtering targets made?

Sputtering targets are made using a variety of manufacturing processes depending on the properties of the target material and its application. These include vacuum melting and rolling, hot-pressed, special press-sintered process, vacuum hot-pressed, and forged methods. Most sputtering target materials can be fabricated into a wide range of shapes and sizes, with circular or rectangular shapes being the most common. Targets are usually made from metallic elements or alloys, but ceramic targets can also be used. Compound sputtering targets are also available, made from a variety of compounds including oxides, nitrides, borides, sulphides, selenides, tellurides, carbides, crystalline, and composite mixtures.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What is sputtering target used for?

Sputtering targets are used in a process called sputtering to deposit thin films of a material onto a substrate using ions to bombard the target. These targets have a wide range of applications in various fields, including microelectronics, thin film solar cells, optoelectronics, and decorative coatings. They allow for the deposition of thin films of materials onto a variety of substrates with high precision and uniformity, making them an ideal tool for producing precision products. Sputtering targets come in various shapes and sizes and can be specialized to meet the specific requirements of the application.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are sputtering targets for electronics?

Sputtering targets for electronics are thin discs or sheets of materials such as aluminum, copper, and titanium that are used to deposit thin films onto silicon wafers to create electronic devices like transistors, diodes, and integrated circuits. These targets are used in a process called sputtering, in which atoms of the target material are physically ejected from the surface and deposited onto a substrate by bombarding the target with ions. Sputtering targets for electronics are essential in the production of microelectronics and typically require high precision and uniformity to ensure quality devices.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What is the lifetime of a sputtering target?

The lifetime of a sputtering target depends on factors such as the material composition, purity, and the specific application it is being used for. Generally, targets can last for several hundred to a few thousand hours of sputtering, but this can vary widely depending on the specific conditions of each run. Proper handling and maintenance can also extend the lifetime of a target. In addition, the use of rotary sputtering targets can increase runtimes and reduce the occurrence of defects, making them a more cost-effective option for high volume processes.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

View more faqs for this product

4.9

out of

5

Excellent quality and fast delivery. KINTEK SOLUTION is the best supplier I've worked with.

Nireeksha

4.8

out of

5

The Neodymium Oxide (Nd2O3) Sputtering Target is a great value for the price. I'm very satisfied with my purchase.

Azeem

4.7

out of

5

KINTEK SOLUTION's Neodymium Oxide (Nd2O3) Sputtering Target is top-notch. It's durable and has exceeded my expectations.

Signe

4.9

out of

5

I'm thoroughly impressed with the quality of the Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION. Highly recommended!

Mehmet

4.8

out of

5

The Neodymium Oxide (Nd2O3) Sputtering Target is a great choice for anyone looking for a high-quality product. I'm very happy with my purchase.

Yash

4.7

out of

5

KINTEK SOLUTION's Neodymium Oxide (Nd2O3) Sputtering Target is a great investment. It's durable and has met all my expectations.

Elif

4.9

out of

5

I'm very satisfied with the Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION. It's a great product at a reasonable price.

Jan

4.8

out of

5

The Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION is a great value for the money. I'm very happy with my purchase.

Sara

4.7

out of

5

KINTEK SOLUTION's Neodymium Oxide (Nd2O3) Sputtering Target is a great choice for anyone looking for a high-quality product. I'm very satisfied with my purchase.

Pedro

4.9

out of

5

I'm very impressed with the quality of the Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION. It's a great product and I highly recommend it.

Maria

4.8

out of

5

The Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION is a great investment. It's durable and has exceeded my expectations.

Ahmed

4.7

out of

5

KINTEK SOLUTION's Neodymium Oxide (Nd2O3) Sputtering Target is a great choice for anyone looking for a high-quality product. I'm very satisfied with my purchase.

Anna

4.9

out of

5

I'm very impressed with the quality of the Neodymium Oxide (Nd2O3) Sputtering Target from KINTEK SOLUTION. It's a great product and I highly recommend it.

Omar

PDF of LM-Nd2O3

Download

Catalog of Lab Materials

Download

Catalog of Sputtering Targets

Download

Catalog of High Purity Materials

Download

Catalog of Thin Film Deposition Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Purity Neodymium (Nd) Sputtering Target / Powder / Wire / Block / Granule

High Purity Neodymium (Nd) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Neodymium (Nd) materials? Our lab-grade Nd materials come in a variety of purities, shapes, and sizes to suit your needs. Shop sputtering targets, coatings, particles, and more today.

High Purity Niobium Oxide (Nb2O5) Sputtering Target / Powder / Wire / Block / Granule

High Purity Niobium Oxide (Nb2O5) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Niobium Oxide (Nb2O5) materials for your lab needs at reasonable prices. We produce and customize materials to fit your unique requirements, with a range of shapes and sizes available.

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Nickel Oxide (Ni2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Oxide materials for your laboratory needs at affordable prices. Our tailored solutions fit your specific requirements. Discover a range of shapes, sizes, and specifications for sputtering targets, coatings, powders, and more.

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Neodymium Fluoride (NdF3) materials for your laboratory? We offer a wide range of options, from sputtering targets to powders, all customizable to meet your unique needs. Discover our affordable prices now.

High Purity Niobium (Nb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Niobium (Nb) Sputtering Target / Powder / Wire / Block / Granule

Looking for customized Niobium materials for laboratory use? Our experts offer tailored solutions with different purities, shapes, and sizes at reasonable prices. Discover our wide range of Niobium products.

High Purity Erbium Oxide (Er2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Erbium Oxide (Er2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Erbium Oxide (Er2O3) materials at competitive prices for your laboratory needs. Our tailored solutions in different purities, shapes, and sizes suit unique requirements. Browse our sputtering targets, coatings, powders, and more.

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Chromium Oxide materials for your lab? Our range includes sputtering targets, powders, foils, and more, customized to your needs. Shop now for reasonable prices.

High Purity Praseodymium (Pr) Sputtering Target / Powder / Wire / Block / Granule

High Purity Praseodymium (Pr) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Praseodymium (Pr) materials for laboratory use at reasonable prices. Our tailored products come in various sizes and purities, including sputtering targets, coating materials, and more. Contact us today.

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.

High Purity Yttrium Oxide (Y2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Yttrium Oxide (Y2O3) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Yttrium Oxide (Y2O3) materials tailored to your unique lab requirements. Our range includes sputtering targets, coating materials, powders, and more, all at reasonable prices.

High Purity Cerium Oxide (CeO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cerium Oxide (CeO2) Sputtering Target / Powder / Wire / Block / Granule

High-quality Cerium Oxide (CeO2) materials for laboratory use at affordable prices. Customizable shapes & sizes. Sputtering targets, powders, 3D printing powders & more. Order now!

High Purity Molybdenum Oxide (MoO3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Molybdenum Oxide (MoO3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Molybdenum Oxide (MoO3) materials for your laboratory needs? Our company provides tailored solutions at reasonable prices. We offer a wide range of sputtering targets, coating materials, powders, and more. Contact us today!

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Aluminum Oxide materials for your lab? We offer high-quality Al2O3 products at affordable prices with customizable shapes and sizes to meet your specific needs. Find sputtering targets, coating materials, powders, and more.

High Purity Iron Oxide (Fe3O4) Sputtering Target / Powder / Wire / Block / Granule

High Purity Iron Oxide (Fe3O4) Sputtering Target / Powder / Wire / Block / Granule

Get Iron Oxide (Fe3O4) materials of different purities, shapes & sizes for laboratory use. Our range includes sputtering targets, coating materials, powders, wire rods, & more. Contact us now.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Nickel Niobium Alloy (NiNb) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Nickel Niobium Alloy (NiNb) materials for your laboratory needs. We offer tailored purities, shapes, and sizes, plus sputtering targets, coatings, powders, and more. Explore our range now!

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

High Purity Scandium Oxide (Sc2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Scandium Oxide (Sc2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Scandium Oxide (Sc2O3) materials for laboratory use at reasonable prices. Our tailored solutions match different purities, shapes, and sizes to suit your requirements. Check out our range of sputtering targets, powders, foils, and more.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

High Purity Vanadium Oxide (V2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Vanadium Oxide (V2O3) Sputtering Target / Powder / Wire / Block / Granule

Buy Vanadium Oxide (V2O3) materials for your lab at reasonable prices. We offer tailored solutions of different purities, shapes, and sizes to meet your unique requirements. Browse our selection of sputtering targets, powders, foils, and more.

High Purity Tantalum Oxide (Ta2O5) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tantalum Oxide (Ta2O5) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Tantalum Oxide (Ta2O5) materials for your laboratory needs at affordable prices. Our experts can tailor materials of various purities, shapes, and sizes to meet your specific requirements. Check out our range of sputtering targets, coating materials, powders, and more.