Knowledge How does sieve analysis work? A Simple Guide to Particle Size Distribution
Author avatar

Tech Team · Kintek Solution

Updated 1 day ago

How does sieve analysis work? A Simple Guide to Particle Size Distribution


At its core, sieve analysis is a straightforward method for determining the particle size distribution of a granular material. It works by passing a sample through a stack of sieves with progressively smaller mesh openings. As the stack is agitated, particles are sorted by size, and by weighing the material retained on each sieve, you can build a quantitative profile of the material's composition.

The true value of sieve analysis lies not just in sorting particles, but in providing a cost-effective and highly reproducible method to translate a physical sample into critical data for quality control, material specification, and engineering design.

How does sieve analysis work? A Simple Guide to Particle Size Distribution

The Fundamental Principle: Mechanical Particle Separation

Sieve analysis operates on a simple, mechanical principle. It physically separates particles into different size ranges, offering a tangible look at the material's structure.

The Sieve Stack

A series of test sieves are stacked in order, with the sieve having the largest mesh openings at the top and the one with the smallest openings at the bottom. A solid collection pan is placed at the very bottom of the stack to collect the finest particles.

The Role of Agitation

A precisely weighed sample of the dry material is placed in the top sieve. The entire stack is then agitated, typically with a mechanical sieve shaker, for a set period. This motion allows particles to find their way through the apertures until they reach a sieve they are too large to pass through.

The End Result: A Size Distribution

After agitation, the material caught on each sieve represents a specific particle size fraction. The contents of each sieve are weighed, providing a data set that shows what percentage of the total sample mass falls within each size range.

The Sieve Analysis Workflow: From Sample to Result

The process is methodical, ensuring that the results are accurate and repeatable. It can be broken down into four distinct phases.

Phase 1: Preparation and Setup

Before any sieving begins, you must develop a method based on the material being tested. This involves selecting an appropriate standard (like ASTM or ISO), choosing the right sieve sizes for the stack, and preparing the sample, which often requires pre-drying it to ensure particles flow freely.

Phase 2: The Initial Weighing Process

Accuracy starts with a baseline. Each sieve in the stack, including the bottom pan, is weighed while empty and its mass is recorded. This is crucial for calculating the final mass of the retained fractions later.

Phase 3: Sieving the Sample

The prepared, weighed sample is added to the top sieve, the lid is secured, and the stack is placed in a sieve shaker. The shaker agitates the stack for a specified duration, ensuring consistent and thorough separation.

Phase 4: Data Collection and Analysis

After shaking is complete, each sieve is weighed again, this time with the retained particles. By subtracting the empty sieve weight from the final weight, you determine the mass of the material in each size fraction. These values are then often converted into percentages of the total sample mass.

Understanding the Trade-offs

While widely used, sieve analysis is not the right tool for every situation. Understanding its strengths and weaknesses is critical for proper application.

Key Advantage: Simplicity and Cost-Effectiveness

Sieve analysis is easy to perform, requires minimal investment in equipment, and provides accurate, reproducible results for suitable materials. A unique benefit is that it physically separates the size fractions, which can then be used for further analysis.

Key Limitation: Resolution

The number of data points you can obtain is limited by the number of sieves in your stack, which is typically a maximum of eight. This means your final particle size distribution is based on a relatively small number of size fractions, offering lower resolution than other methods.

Key Limitation: Material Constraints

The technique is only effective for dry, free-flowing particles. It also has a practical lower limit for measurement around 50 micrometers (µm); particles smaller than this are difficult to sieve accurately and may require alternative analysis methods like laser diffraction.

Key Limitation: Time Consumption

The entire process, especially the necessary sample drying and the multiple weighing steps, can be time-consuming compared to more modern, automated particle analysis techniques.

Practical Applications: Where Sieve Analysis Matters

This method is a cornerstone in industries where particle size directly impacts product performance, safety, and quality.

Quality Control in Manufacturing

Manufacturers use sieve analysis to provide a reliable check on particle size throughout a production line. It ensures that powders and granular materials meet the specifications required for the final product, from pharmaceuticals to food products.

Civil Engineering and Construction

The properties of aggregates are critical in construction. Sieve analysis is used to determine the suitability of sand, gravel, and crushed stone for use in concrete and asphalt mixes, ensuring the final material has the required strength and stability. It is also used to properly size screens for water production wells.

Making the Right Choice for Your Goal

To decide if sieve analysis fits your needs, consider your primary objective.

  • If your primary focus is routine quality control or material grading on a budget: Sieve analysis is an excellent, reliable choice due to its low cost and high reproducibility for known materials.
  • If your primary focus is high-resolution data for R&D or analyzing very fine powders: You should consider alternative methods like laser diffraction, as sieve analysis will lack the necessary detail and cannot measure sub-50 µm particles.

Ultimately, understanding both its procedural simplicity and its inherent limitations is the key to effectively leveraging sieve analysis for material characterization.

Summary Table:

Key Aspect Details
Principle Mechanical separation of particles using a stack of sieves with different mesh sizes.
Process Sample is agitated on sieves; particles are sorted and weighed by size fraction.
Best For Dry, free-flowing particles larger than 50 µm; ideal for quality control and material grading.
Limitations Lower resolution than laser diffraction; not suitable for very fine powders or wet materials.

Need Reliable Sieve Analysis Equipment for Your Lab?

KINTEK specializes in high-quality lab equipment and consumables, including precision test sieves and mechanical sieve shakers. Whether you're in manufacturing, construction, or pharmaceuticals, our products ensure accurate, reproducible particle size analysis for your quality control needs.

Contact us today to find the perfect sieve analysis solution for your laboratory!

Visual Guide

How does sieve analysis work? A Simple Guide to Particle Size Distribution Visual Guide

Related Products

People Also Ask

Related Products

Three-dimensional electromagnetic sieving instrument

Three-dimensional electromagnetic sieving instrument

KT-VT150 is a desktop sample processing instrument for both sieving and grinding. Grinding and sieving can be used both dry and wet. The vibration amplitude is 5mm and the vibration frequency is 3000-3600 times/min.

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Laboratory Wet Three-Dimensional Vibratory Sieve Shaker Machine

Laboratory Wet Three-Dimensional Vibratory Sieve Shaker Machine

The wet three-dimensional vibrating sieving instrument focuses on solving the sieving tasks of dry and wet samples in the laboratory. It is suitable for sieving 20g - 3kg dry, wet or liquid samples.

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

Custom PTFE Teflon Parts Manufacturer for PTFE Mesh F4 Sieve

PTFE mesh sieve is a specialized test sieve designed for particle analysis in various industries, featuring a non-metallic mesh woven from PTFE filament. This synthetic mesh is ideal for applications where metal contamination is a concern . PTFE sieves are crucial for maintaining the integrity of samples in sensitive environments, ensuring accurate and reliable results in particle size distribution analysis.

Lab Internal Rubber Mixer Rubber Kneader Machine for Mixing and Kneading

Lab Internal Rubber Mixer Rubber Kneader Machine for Mixing and Kneading

Lab internal rubber mixer is suitable for mixing, kneading and dispersing various chemical raw materials such as plastics, rubber, synthetic rubber, hot melt adhesive and various low-viscosity materials.

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Precision metallographic mounting machines for labs—automated, versatile, and efficient. Ideal for sample prep in research and quality control. Contact KINTEK today!

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

The cast film machine is designed for the molding of polymer cast film products and has multiple processing functions such as casting, extrusion, stretching, and compounding.

Double Plate Heating Press Mold for Lab

Double Plate Heating Press Mold for Lab

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

High Performance Laboratory Freeze Dryer

High Performance Laboratory Freeze Dryer

Advanced lab freeze dryer for lyophilization, preserving biological & chemical samples efficiently. Ideal for biopharma, food, and research.

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

Desktop Fast Laboratory Autoclave Sterilizer 35L 50L 90L for Lab Use

The desktop fast steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items. It efficiently sterilizes surgical instruments, glassware, medicines, and resistant materials, making it suitable for various applications.

Single Punch Tablet Press Machine and Mass Production Rotary Tablet Punching Machine for TDP

Single Punch Tablet Press Machine and Mass Production Rotary Tablet Punching Machine for TDP

Rotary tablet punching machine is an automatic rotating and continuous tableting machine. It is mainly used for tablet manufacturing in the pharmaceutical industry, and is also suitable for industrial sectors such as food, chemicals, batteries, electronics, ceramics, etc. to compress granular raw materials into tablets.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Powerful Plastic Crusher Machine

Powerful Plastic Crusher Machine

KINTEK's powerful plastic crusher machines process 60-1350 KG/H of diverse plastics, ideal for labs and recycling. Durable, efficient, and customizable.

Optical Ultra-Clear Glass Sheet for Laboratory K9 B270 BK7

Optical Ultra-Clear Glass Sheet for Laboratory K9 B270 BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

Single Punch Manual Tablet Press Machine TDP Tablet Punching Machine

Single Punch Manual Tablet Press Machine TDP Tablet Punching Machine

Single punch manual tablet punching machine can press various granular, crystal or powdery raw materials with good fluidity into disc-shaped, cylindrical, spherical, convex, concave and other various geometric shapes (such as square, triangle, ellipse, capsule shape, etc.), and can also press products with text and patterns.

Variable Speed Peristaltic Pump

Variable Speed Peristaltic Pump

KT-VSP Series Smart Variable Speed Peristaltic Pumps offer precise flow control for labs, medical, and industrial applications. Reliable, contamination-free liquid transfer.

Customer Made Versatile CVD Tube Furnace Chemical Vapor Deposition Chamber System Equipment

Customer Made Versatile CVD Tube Furnace Chemical Vapor Deposition Chamber System Equipment

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

Vacuum Hot Press Furnace Machine for Lamination and Heating

Vacuum Hot Press Furnace Machine for Lamination and Heating

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

The PTFE culture dish evaporating dish is a versatile laboratory tool known for its chemical resistance and high-temperature stability. PTFE, a fluoropolymer, offers exceptional non-stick properties and durability, making it ideal for various applications in research and industry, including filtration, pyrolysis, and membrane technology.

Chemical Vapor Deposition CVD Equipment System Chamber Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

Chemical Vapor Deposition CVD Equipment System Chamber Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.


Leave Your Message