Knowledge How Many Types of Sputter Are There? 4 Key Techniques Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

How Many Types of Sputter Are There? 4 Key Techniques Explained

Sputtering is a versatile technique used in various industries for material deposition. There are several types of sputtering techniques, each with unique characteristics and advantages.

4 Key Types of Sputtering Techniques

How Many Types of Sputter Are There? 4 Key Techniques Explained

1. Direct Current (DC) Magnetron Sputtering

Direct Current (DC) Magnetron Sputtering is one of the most common methods. In this method, a direct current power supply is used to generate a plasma in a low-pressure gas environment.

The plasma is created near a target material, typically made of metal or ceramic, which is to be sputtered. The plasma causes gas ions to collide with the target, dislodging atoms from the surface and ejecting them into the gas phase.

The magnetic field produced by the magnet assembly helps increase the sputtering rate and ensures a more uniform deposition of the sputtered material onto the substrate.

The sputtering rate can be calculated using a specific formula that considers factors such as ion flux density, number of target atoms per unit volume, atomic weight of the target material, and more.

2. Reactive Sputtering

Reactive Sputtering involves the combination of a non-inert gas, such as oxygen, and an elemental target material, such as silicon. The gas chemically reacts with the sputtered atoms within the chamber, generating a new compound that serves as the coating material rather than the original pure target material.

This technique is particularly useful for creating specific chemical compounds in the deposition process.

3. Radio Frequency (RF) Sputtering

Radio Frequency (RF) Sputtering is another common method. It uses radio frequency power to generate the plasma, making it suitable for non-conductive target materials.

4. High-Power Impulse Magnetron Sputtering (HiPIMS)

High-Power Impulse Magnetron Sputtering (HiPIMS) is a newer technique that uses short, high-power pulses to achieve higher plasma densities and better film properties.

Continue Exploring, Consult Our Experts

Are you ready to elevate your research or production processes to the next level? KINTEK offers state-of-the-art sputtering equipment, including Direct Current (DC) Magnetron Sputtering and Reactive Sputtering systems, designed to meet the most demanding material deposition needs.

Our technologies provide unparalleled control and efficiency, ensuring that your projects benefit from the highest quality coatings and films. Whether you're working in electronics, optics, or any field requiring precise material engineering, KINTEK has the tools to help you succeed.

Contact us today to learn more about how our sputtering solutions can transform your work!

Related Products

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

High Purity Aluminum (Al) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum (Al) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Aluminum (Al) materials for laboratory use at affordable prices. We offer customized solutions including sputtering targets, powders, foils, ingots & more to meet your unique needs. Order now!

High Purity Antimony (Sb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Antimony (Sb) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Antimony (Sb) materials tailored to your specific needs. We offer a wide range of shapes and sizes at reasonable prices. Browse our sputtering targets, powders, foils, and more.

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Discover our Tungsten Titanium Alloy (WTi) materials for laboratory use at affordable prices. Our expertise allows us to produce custom materials of different purities, shapes, and sizes. Choose from a wide range of sputtering targets, powders, and more.

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of high-quality Tellurium (Te) materials for laboratory use at affordable prices. Our expert team produces custom sizes and purities to fit your unique needs. Shop sputtering targets, powders, ingots, and more.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide materials at reasonable prices for your lab needs. We customize BC materials of different purities, shapes, and sizes, including sputtering targets, coatings, powders, and more.

Copper Zirconium Alloy (CuZr) Sputtering Target / Powder / Wire / Block / Granule

Copper Zirconium Alloy (CuZr) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of Copper Zirconium Alloy materials at affordable prices, tailored to your unique requirements. Browse our selection of sputtering targets, coatings, powders, and more.

Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Discover our affordable Titanium Silicon Alloy (TiSi) materials for laboratory use. Our custom production offers various purities, shapes, and sizes for sputtering targets, coatings, powders, and more. Find the perfect match for your unique needs.

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Cobalt (Co) materials for laboratory use, tailored to your unique needs. Our range includes sputtering targets, powders, foils, and more. Contact us today for customized solutions!

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High purity Platinum (Pt) sputtering targets, powders, wires, blocks, and granules at affordable prices. Tailored to your specific needs with diverse sizes and shapes available for various applications.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.


Leave Your Message