Thematics High Purity Graphite Crucible

high purity graphite crucible

High-purity graphite crucibles are used to contain materials that require high-temperature processing, like melting and casting metals and alloys. They can withstand extreme heat up to 3000°C without melting or deforming. Graphite crucibles are chemically inert, resisting corrosion from acids, bases, and solvents, making them suitable for handling various materials without contamination or reactions. They also have good thermal shock resistance, enduring rapid temperature changes without cracking. Available in different sizes and shapes, they can be cylindrical, conical, or bowl-shaped, with optional lids or caps for protection during heating or cooling.


Graphite crucibles are widely used in various industries, including metallurgy, foundries, jewelry manufacturing and chemical laboratories. They are commonly used in processes such as melting and casting of metals, alloys and other materials. Their high purity and inertness ensure the integrity and quality of processed materials.

It’s important to note that while high-purity graphite crucibles are extremely durable and resistant to high temperatures and chemicals, they can still experience wear and gradual oxidation over time. Proper care and maintenance, such as avoiding thermal shock and regular cleaning, can help extend the life and performance of your graphite crucible.

To sum up, high-purity graphite crucible is a special container made of high-quality graphite material. They are designed to withstand high temperatures, resist chemical attack, and have good thermal shock resistance. Graphite crucibles are used in processes involving high-temperature material processing, such as melting and casting. Their high purity and inertness make them suitable for processing a variety of materials without causing contamination or reactions. Proper care and maintenance are necessary to maximize its life and performance.

FAQ

How Are High-purity Graphite Crucibles Made?

High-purity graphite crucibles are typically manufactured through a process called isostatic pressing. In this method, graphite powder is placed in a rubber mold, and then subjected to high pressure from all directions. This pressure compacts the graphite particles into a dense and uniform crucible shape. The crucible is then heated to a high temperature to remove any impurities and improve its purity.

What Are The Common Applications Of High-purity Graphite Crucibles?

High-purity graphite crucibles have a wide range of applications in industries such as metallurgy, foundries, and laboratories. They are commonly used for melting and casting non-ferrous metals, including aluminum, copper, and precious metals. High-purity graphite crucibles are also utilized in the production of alloys and high-temperature ceramics. They are essential in processes such as chemical analysis, spectroscopy, and sample preparation in laboratories. Additionally, these crucibles find applications in the semiconductor industry for the melting and growing of silicon and other semiconductor materials.

What Factors Should Be Considered When Selecting High-purity Graphite Crucibles?

When selecting high-purity graphite crucibles, several factors should be considered. Firstly, the size and capacity of the crucible should align with the intended application and the amount of material to be melted or processed. The crucible's thermal conductivity, thermal shock resistance, and chemical compatibility should be evaluated to ensure they meet the specific process requirements. It is important to select crucibles made from high-quality graphite material with high purity levels to minimize contamination and ensure excellent performance. The crucible's design and construction should also be considered, such as the presence of handles or pouring spouts for easy handling. Additionally, it is advisable to consult with manufacturers or experts in the field to ensure the selection of the most suitable high-purity graphite crucibles for specific applications.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Fused Silica Crucible: Properties, Applications, and Preparation Process

Fused Silica Crucible: Properties, Applications, and Preparation Process

An in-depth look at the properties, applications, and preparation methods of fused silica crucibles in the solar photovoltaic industry.

Read more
Graphite Crucible in the Future Production of Third Generation Semiconductor Compounds

Graphite Crucible in the Future Production of Third Generation Semiconductor Compounds

Explores the role and future trends of graphite crucibles in the production of third-generation semiconductor materials.

Read more
High Purity Graphite Crucible: Features, Production, and Usage

High Purity Graphite Crucible: Features, Production, and Usage

An in-depth look at high purity graphite crucibles, their production processes, and their industrial applications.

Read more
Inorganic Non-Metallic Materials: Crucibles

Inorganic Non-Metallic Materials: Crucibles

An overview of crucibles made from various inorganic non-metallic materials, their uses, technical parameters, and advantages.

Read more
Preparation and Performance of Alumina Crucibles for Vacuum Induction Melting Furnace

Preparation and Performance of Alumina Crucibles for Vacuum Induction Melting Furnace

This article discusses the preparation process and performance benefits of alumina crucibles for vacuum induction melting furnaces, emphasizing thermal stability and long service life.

Read more
Ceramic Alumina Crucible for Thermal Analysis Test Containers

Ceramic Alumina Crucible for Thermal Analysis Test Containers

An in-depth guide on selecting and using ceramic alumina crucibles for thermal analysis tests, focusing on factors affecting test results.

Read more
Alumina Crucibles in Precision Casting

Alumina Crucibles in Precision Casting

Explores the use of alumina crucibles in precision casting, focusing on their properties and advantages in high-temperature alloy melting.

Read more
Crucible Types, Properties, and Applications

Crucible Types, Properties, and Applications

A detailed overview of various crucible types, their properties, and application areas in laboratory and industrial settings.

Read more
Introduction to Various Ceramic Crucibles

Introduction to Various Ceramic Crucibles

An overview of different types of ceramic crucibles, their properties, and applications.

Read more
The Role and Types of Crucibles in Scientific Experiments

The Role and Types of Crucibles in Scientific Experiments

Explores the significance and various types of crucibles in scientific experiments, focusing on their materials and applications.

Read more
Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

A detailed comparison of pyrolytic graphite and pyrolytic boron nitride crucibles, focusing on their preparation processes, characteristics, and applications.

Read more
Guidelines for the Use of Boron Nitride Crucibles

Guidelines for the Use of Boron Nitride Crucibles

Instructions on the proper use, precautions, and compatibility of boron nitride crucibles.

Read more
Electron Beam Evaporation Coating Technology and Material Selection

Electron Beam Evaporation Coating Technology and Material Selection

An in-depth look at the principles and applications of electron beam evaporation coating technology, including material selection and various fields of application.

Read more
Electron Beam Evaporation: Advanced Thin Film Creation

Electron Beam Evaporation: Advanced Thin Film Creation

Explores the technology and applications of electron beam evaporation in thin film production.

Read more
Electron Beam Evaporation Coating: Principles, Characteristics, and Applications

Electron Beam Evaporation Coating: Principles, Characteristics, and Applications

An in-depth analysis of electron beam evaporation coating technology, its advantages, disadvantages, and applications in thin film manufacturing.

Read more
Electron Beam Evaporation Technology in Vacuum Coating

Electron Beam Evaporation Technology in Vacuum Coating

An in-depth look at electron beam evaporation, its types, advantages, and disadvantages in vacuum coating processes.

Read more
Comprehensive Overview of Vacuum Evaporation Systems

Comprehensive Overview of Vacuum Evaporation Systems

An in-depth look at vacuum evaporation systems, their principles, components, and applications.

Read more
Understanding Evaporation Plating, Sputtering Plating, and Ion Plating

Understanding Evaporation Plating, Sputtering Plating, and Ion Plating

A detailed comparison of evaporation plating, sputtering plating, and ion plating techniques, their principles, types, and characteristics.

Read more
Challenges in the Development and Application of Tantalum in Vacuum Deposition Equipment

Challenges in the Development and Application of Tantalum in Vacuum Deposition Equipment

This article discusses the role of tantalum in vacuum deposition equipment, focusing on its properties, manufacturing challenges, and its critical applications in industries like OLED screen production.

Read more
Exploring Various Vacuum Coating Technologies: Evaporation, Sputtering, and Ion Plating

Exploring Various Vacuum Coating Technologies: Evaporation, Sputtering, and Ion Plating

This article delves into the different vacuum coating technologies, focusing on evaporation, sputtering, and ion plating, detailing their principles, advantages, and applications.

Read more

Downloads

Catalog of Evaporation Crucible

Download

Catalog of High Purity Graphite Crucible

Download

Catalog of Thermal Evaporation Sources

Download