Knowledge What is the Base Material of DLC Coating? 4 Key Points to Understand Diamond-like Carbon
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What is the Base Material of DLC Coating? 4 Key Points to Understand Diamond-like Carbon

The base material of DLC (Diamond-like Carbon) coating is primarily composed of carbon, often with a significant amount of hydrogen.

This composition results in a material that exhibits properties similar to diamond, including high hardness and excellent wear resistance.

4 Key Points to Understand Diamond-like Carbon

What is the Base Material of DLC Coating? 4 Key Points to Understand Diamond-like Carbon

1. Composition of DLC

DLC is an amorphous form of carbon that contains a significant proportion of sp3 hybridized carbon atoms.

These are the same type of bonds found in diamond, giving it its diamond-like properties.

The presence of hydrogen in most DLC coatings further enhances its properties by modifying the structure and reducing residual stresses in the film.

2. Deposition Techniques

DLC coatings are typically deposited using techniques such as Radio Frequency Plasma-Assisted Chemical Vapor Deposition (RF PECVD).

This method involves the use of hydrocarbons, which are compounds of hydrogen and carbon, in a plasma state.

The plasma allows for the uniform deposition of the DLC film on various substrates, including metals like aluminum and stainless steel, as well as non-metallic materials like plastics and ceramics.

3. Properties and Applications

The unique combination of carbon and hydrogen in DLC coatings results in high hardness, low friction, and excellent wear and chemical resistance.

These properties make DLC coatings ideal for applications requiring high specific strength and wear resistance, such as in automotive components (e.g., pistons and bores), VCR heads, copier machine drums, and textile machinery components.

Additionally, DLC's anti-sticking properties make it suitable for tool coatings, particularly in the machining of aluminum and plastic injection molds.

4. Environmental and Performance Aspects

DLC coatings are considered environmentally friendly as they involve the reuse of carbon and hydrogen during the deposition process.

The plasma-based deposition ensures a uniform and high-quality finish, comparable to other metal coating solutions.

The thin film nature of DLC coatings (typically 0.5 to 5 microns) ensures that they do not significantly alter the dimensions of the engineered parts they are applied to.

In summary, the base material of DLC coating is primarily carbon, often hydrogenated, which imparts diamond-like properties such as high hardness and wear resistance, making it a versatile and valuable coating for a wide range of industrial applications.

Continue exploring, consult our experts

Unlock the Potential of Diamond-like Carbon with KINTEK!

Experience the unparalleled strength and durability of Diamond-like Carbon (DLC) coatings, expertly crafted by KINTEK.

Our advanced DLC coatings offer high hardness, exceptional wear resistance, and low friction, making them ideal for a variety of industrial applications.

Whether you're looking to enhance automotive components, improve tool performance, or extend the life of machinery, KINTEK's DLC coatings are the solution you need.

Embrace innovation and efficiency with KINTEK – contact us today to learn more about how our DLC coatings can revolutionize your products!

Related Products

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

CVD Diamond for dressing tools

CVD Diamond for dressing tools

Experience the Unbeatable Performance of CVD Diamond Dresser Blanks: High Thermal Conductivity, Exceptional Wear Resistance, and Orientation Independence.

CVD Diamond wire drawing die blanks

CVD Diamond wire drawing die blanks

CVD diamond wire drawing die blanks: superior hardness, abrasion resistance, and applicability in wire drawing various materials. Ideal for abrasive wear machining applications like graphite processing.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Lithium cobaltate (LiCoO2) Sputtering Target / Powder / Wire / Block / Granule

Lithium cobaltate (LiCoO2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Lithium cobaltate (LiCoO2) materials tailored to your needs at reasonable prices. Discover our range of sizes and specifications for sputtering targets, coatings, powders, and more.

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Cobalt (Co) materials for laboratory use, tailored to your unique needs. Our range includes sputtering targets, powders, foils, and more. Contact us today for customized solutions!

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Cobalt Telluride (CoTe) Sputtering Target / Powder / Wire / Block / Granule

Cobalt Telluride (CoTe) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Cobalt Telluride materials for your laboratory needs at reasonable prices. We offer customized shapes, sizes, and purities, including sputtering targets, coatings, powders, and more.

Cobalt Silicide (CoSi2) Sputtering Target / Powder / Wire / Block / Granule

Cobalt Silicide (CoSi2) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Cobalt Silicide materials for your laboratory research? We offer tailored solutions of different purities, shapes, and sizes, including sputtering targets, coating materials, and more. Explore our range now!

Manganese Cobalt Nickel alloy (MnCoNi) Sputtering Target / Powder / Wire / Block / Granule

Manganese Cobalt Nickel alloy (MnCoNi) Sputtering Target / Powder / Wire / Block / Granule

Get top-quality Manganese Cobalt Nickel alloy materials for your laboratory needs at affordable prices. Our customized products come in various sizes and shapes, including sputtering targets, coating materials, powders, and more.


Leave Your Message