CVD materials
Cutting Tool Blanks
Item Number : cvdm-04
Price varies based on specs and customizations
Shipping:
Contact us to get shipping details Enjoy On-time Dispatch Guarantee.
Introduction
Diamond tools are metal cutting tools with diamond grains fixed on the functional parts of the tool via a bonding material. Diamond tools have many advantages, including high working efficiency, low grinding force, high wear resistance, and high grinding quality and precision.
CVD diamond cutting tools are widely used for cutting non-ferrous materials, ceramics, abrasive composites, high silicon-content aluminum alloy, graphite, and other difficult machining materials. They offer excellent wear resistance, low friction coefficient, perfect thermal conductivity, high fracture strength and toughness, and better dimensional and thermal stability.
Applications
CVD diamond cutting tools are widely used in various industrial sectors due to their exceptional properties. These tools have proven their effectiveness in cutting and machining a wide range of materials, including:
-
Non-ferrous materials: CVD diamond tools excel in cutting non-ferrous metals such as aluminum, copper, and their alloys. Their high thermal conductivity and low friction coefficient ensure clean and precise cutting operations.
-
Ceramics: The extreme hardness and wear resistance of CVD diamond make it an ideal choice for cutting ceramic materials. It can effectively machine ceramics with high precision and minimal chipping or breakage.
-
Abrasive composites: CVD diamond tools are highly effective in cutting abrasive composites, which are often encountered in industries such as aerospace and automotive. These tools can withstand the abrasive nature of the material, resulting in longer tool life and improved cutting performance.
-
High silicon-content aluminum alloy: CVD diamond tools are well-suited for cutting high silicon-content aluminum alloys, which are known for their hardness and abrasiveness. The diamond's exceptional wear resistance enables it to maintain its sharpness and deliver consistent cutting results.
-
Graphite: CVD diamond tools are commonly used for cutting graphite, a soft and brittle material that requires careful handling. The diamond's high thermal conductivity prevents the buildup of heat at the cutting edge, ensuring clean and precise cuts.
-
Other difficult-to-machine materials: CVD diamond tools have demonstrated their capabilities in cutting a variety of other challenging materials, including glass, carbon fiber, and certain types of plastics. Their versatility makes them a valuable asset in various industrial applications.
Features
CVD diamond cutting tools offer a range of benefits for users, including:
-
Excellent wear resistance: This means that CVD diamond tools can be used for longer periods of time before they need to be replaced, resulting in reduced downtime and increased productivity.
-
Low friction coefficient: This helps to reduce the amount of heat generated during machining, which can lead to improved surface finishes and longer tool life.
-
Perfect thermal conductivity: This allows CVD diamond tools to operate at lower temperatures, which can help to prevent damage to the workpiece and the tool itself.
-
High fracture strength and toughness: This makes CVD diamond tools more resistant to chipping and breakage, even under heavy cutting loads.
-
Better dimensional and thermal stability: This helps to ensure that CVD diamond tools maintain their shape and cutting performance over time, resulting in more consistent results.
-
Wide range of applications: CVD diamond tools can be used to cut a wide variety of materials, including non-ferrous metals, ceramics, abrasive composites, high silicon-content aluminum alloys, graphite, and other difficult-to-machine materials.
Principle
Cutting tool blanks fabricated by DC arc Plasma Jet usually have a substantially higher thermal conductivity than those by other techniques even at a relatively high growth rate. This is apparently favorable for heavy load high-speed cutting operations. Very low friction coefficient, higher fracture strength and fracture toughness, very high thermal oxidation resistance, in combination with the higher thermal conductivity, should make it to be an ideal material for high-performance cutting.
Advantages
-
Excellent wear resistance: CVD diamond cutting tools can last up to 100 times longer than traditional carbide tools, resulting in less downtime for tool changes and increased productivity.
-
Low friction coefficient: This reduces the amount of heat generated during cutting, which can help to prevent workpiece damage and improve surface finish.
-
Perfect thermalconductivity: CVD diamond has a very high thermalconductivity, which helps to dissipate heat away from the cutting edge and prevent tool wear.
-
High fracture strength and toughness: CVD diamond is a very tough material, which can resist chipping and breakage even under heavy cutting loads.
-
Betterdimensional and thermal stability: CVD diamond is very stable at high temperatures, which helps to maintain its cutting performance even in harsh conditions.
-
Orientation independent: CVD diamond is a polycrystalline material, which means that it does not have a preferred orientation. This makes it ideal for use in applications where the cutting tool is subjected to multiple orientations.
FAQ
What materials can a diamond cutting machine cut?
What is CVD (Chemical Vapor Deposition) and what are its key advantages?
What is the difference between cutting tool blanks fabricated by DC are Plamsa jet and those by other techniques?
What is CVD diamond machine?
What is the principle behind a diamond cutting machine?
What are some common applications of CVD materials?
What is the basic principle of CVD?
What types of diamond growth machines are available?
What is Mpcvd?
What are the applications of CVD dimand cutting tools?
How does a CVD diamond machine work?
What are the advantages of using a diamond cutting machine?
What types of CVD materials are available?
What are the different types of CVD method?
What are the advantages of lab grown diamonds?
What is Mpcvd machine?
How to solve the problem of tight tolerances of forging blanks?
What are the advantages of using CVD diamond machines?
What types of diamond cutting machines are available?
How does CVD diamond enhance the performance of cutting tools?
What are the advantages of using chemical vapor deposition machines?
What is the price of CVD growing machine?
What are the advantages of Mpcvd?
What considerations should be made when selecting a CVD diamond machine?
How does a diamond cutting machine ensure high precision cutting?
What makes CVD diamond domes suitable for high-performance loudspeakers?
What are the applications of chemical vapor deposition machines?
Are CVD diamonds real or fake?
What are the common applications of diamonds produced by CVD diamond machines?
What is the application range of a diamond cutting machine?
How does CVD diamond improve thermal management in electronic devices?
What factors should be considered when selecting a chemical vapor deposition machine?
Can chemical vapor deposition machines be used for multi-layered thin film deposition?
4.9
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are a game-changer! They are incredibly durable and have significantly improved our productivity.
4.8
out of
5
I highly recommend these Cutting Tool Blanks. They offer an exceptional balance of quality and value. The fast delivery is a bonus!
4.7
out of
5
KINTEK SOLUTION's Cutting Tool Blanks have exceeded my expectations. The quality is top-notch, and they have significantly reduced our production costs.
4.6
out of
5
These Cutting Tool Blanks are a must-have for any laboratory. They are reliable, efficient, and built to last.
4.9
out of
5
I was impressed by the cutting-edge technology used in these Cutting Tool Blanks. They have revolutionized our laboratory operations.
4.8
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are worth every penny. They have significantly improved the accuracy and precision of our cutting processes.
4.7
out of
5
These Cutting Tool Blanks are incredibly user-friendly and have made our laboratory work much easier. I highly recommend them.
4.6
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are a valuable addition to our laboratory. They have increased our productivity and efficiency.
4.9
out of
5
I am highly satisfied with the durability and performance of these Cutting Tool Blanks. They are an excellent investment.
4.8
out of
5
These Cutting Tool Blanks are a testament to KINTEK SOLUTION's commitment to innovation. They have transformed our cutting operations.
4.7
out of
5
I highly recommend these Cutting Tool Blanks for their exceptional quality and reliability. They have exceeded our expectations.
4.6
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are a great value for the price. They have significantly reduced our downtime and increased our productivity.
4.9
out of
5
I am extremely impressed with the speed of delivery and the exceptional customer service I received from KINTEK SOLUTION.
4.8
out of
5
These Cutting Tool Blanks are a fantastic investment. They have significantly improved the quality of our cutting operations.
4.7
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are a perfect fit for our laboratory. They are precise, efficient, and built to last.
4.6
out of
5
I am very satisfied with the performance and durability of these Cutting Tool Blanks. They have made a noticeable difference in our operations.
4.9
out of
5
KINTEK SOLUTION's Cutting Tool Blanks are a game-changer for our laboratory. They have increased our efficiency and improved the accuracy of our cutting processes.
4.8
out of
5
These Cutting Tool Blanks are a testament to the quality and innovation of KINTEK SOLUTION. They have exceeded our expectations.
4.7
out of
5
I highly recommend KINTEK SOLUTION's Cutting Tool Blanks. They are a valuable addition to any laboratory and have significantly improved our operations.
4.6
out of
5
These Cutting Tool Blanks are an excellent investment. They have significantly reduced our production costs and improved the quality of our products.
PDF - Cutting Tool Blanks
disabled = false, 3000)"> DownloadCatalog of Cvd Materials
disabled = false, 3000)"> DownloadCatalog of Cvd Diamond Machine
disabled = false, 3000)"> DownloadCatalog of Diamond Cutting Machine
disabled = false, 3000)"> DownloadCatalog of Cvd Materials
disabled = false, 3000)"> DownloadCatalog of Cvd Machine
disabled = false, 3000)"> DownloadCatalog of Lab Grown Diamond Machine
disabled = false, 3000)"> DownloadCatalog of Mpcvd Machine
disabled = false, 3000)"> DownloadREQUEST A QUOTE
Our professional team will reply to you within one business day. Please feel free to contact us!
Related Products
Carbon paper/cloth Diaphragm Copper/aluminum foil and other professional cutting tools
Professional tools for cutting lithium sheets, carbon paper, carbon cloth, separators, copper foil, aluminum foil, etc., with round and square shapes and different sizes of blades.
CVD Diamond wire drawing die blanks
CVD diamond wire drawing die blanks: superior hardness, abrasion resistance, and applicability in wire drawing various materials. Ideal for abrasive wear machining applications like graphite processing.
Workbench 800mm * 800mm diamond single wire circular small cutting machine
Diamond wire cutting machines are mainly used for precision cutting of ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, biomedical materials and other material analysis samples. Especially suitable for precision cutting of ultra-thin plates with thickness up to 0.2mm.
CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications
High precision diamond wire cutting machine
The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.
CVD Diamond for dressing tools
Experience the Unbeatable Performance of CVD Diamond Dresser Blanks: High Thermal Conductivity, Exceptional Wear Resistance, and Orientation Independence.
12 inch/24 inch high precision automatic diamond wire cutting machine
The high precision automatic diamond wire cutting machine is a versatile cutting tool that uses a diamond wire to cut through a wide range of materials, including conductive and non-conductive materials, ceramics, glass, rocks, gems, jade, meteorites, monocrystalline silicon, silicon carbide, polycrystalline silicon, refractory bricks, epoxy boards, and ferrite bodies. It is especially suitable for cutting various brittle crystals with high hardness, high value, and easy to break.
CVD diamond for thermal management
CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.
Titanium Carbide (TiC) Sputtering Target / Powder / Wire / Block / Granule
Get high-quality Titanium Carbide (TiC) materials for your lab at affordable prices. We offer a wide range of shapes and sizes, including sputtering targets, powders, and more. Tailored to your specific needs.
Tungsten Carbide (WC) Sputtering Target / Powder / Wire / Block / Granule
Looking for affordable Tungsten Carbide (WC) materials for your lab? Our expertly tailored products come in various shapes and sizes, from sputtering targets to nanometer powders. Shop now for quality materials that fit your unique needs.
Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule
Discover our Tungsten Titanium Alloy (WTi) materials for laboratory use at affordable prices. Our expertise allows us to produce custom materials of different purities, shapes, and sizes. Choose from a wide range of sputtering targets, powders, and more.
CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.
Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.
Create uniform samples easily with Square Lab Press Mold - available in various sizes. Ideal for battery, cement, ceramics, and more. Custom sizes available.
Discover CVD diamond domes, the ultimate solution for high-performance loudspeakers. Made with DC Arc Plasma Jet technology, these domes deliver exceptional sound quality, durability, and power handling.
Drawing die nano-diamond coating HFCVD Equipment
The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.
Zirconia Ceramic Ball - Precision Machining
zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.
915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.
Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining
Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.
Related Articles
The Process of Fabricating a CVD Diamond By MPCVD Machine
CVD diamond machines have gained significant importance in various industries and scientific research.
Diamond Growing Machines For Modern Machining and Need for New Cutting Tools
Diamonds have become popular due to their exceptional hardness, superior thermal conductivity, and chemical stability.
Understanding the CVD Diamond Machine and How It Works
CVD (Chemical Vapor Deposition) diamond creation process involves the deposition of carbon atoms onto a substrate using a gas phase chemical reaction. The process starts with the selection of a high-quality diamond seed, which is then placed in a growth chamber along with a carbon-rich gas mixture.
How CVD is Used in the Semiconductor Industry
CVD has revolutionized the semiconductor industry, enabling the production of high-performance electronic devices with enhanced functionality and reliability.
Key Materials for Successful CVD Processes
The success of CVD processes is dependent on the availability and quality of precursors used during the process.
The Advancements in MPCVD Systems for Large Size Single Crystal Diamonds
Advancements in MPCVD systems have enabled the production of larger and higher quality single-crystal diamonds, offering promising potential for future applications.
A Comprehensive Guide to MPCVD: Diamond Synthesis and Applications
Explore the fundamentals, advantages, and applications of Microwave Plasma Chemical Vapor Deposition (MPCVD) in diamond synthesis. Learn about its unique capabilities and how it compares to other diamond growth methods.
Advantages of Using CVD Tube Furnace for Coating
CVD coatings have several advantages over other coating methods, such as high purity, density, and uniformity, making them ideal for many applications in various industries.
How CVD Coating Can Help You Achieve High Purity and Density
The CVD process offers several advantages over other coating techniques, such as high purity, uniformity, and the ability to deposit coatings with high-density.
Comparing CVD Synthetic Diamonds and HPHT Cultivated Diamonds: What are the Differences?
Both CVD and HPHT diamonds are considered to be real diamonds, as they are made up of pure carbon and have the same physical and chemical properties as natural diamonds.
How to Check if Your Diamond is CVD-Produced
When it comes to buying a diamond, it's important to understand the difference between a naturally occurring diamond and one produced using CVD technology.
A Beginner's Guide to CVD Thin Film Technology
CVD is used in various industries, including the semiconductor industry, where it is used to produce thin films for electronic devices.