Products Lab Consumables & Materials Lab Materials Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule
Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Lab Materials

Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Item Number : LM-MgF2

Price varies based on specs and customizations


Chemical Formula
MgF2
Purity
4N
Shape
discs / wire / block / powder / plates / column targets / step target / custom-made
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

We offer Magnesium Fluoride (MgF2) materials for laboratory use at affordable prices. Our specialty lies in manufacturing and customizing Magnesium Fluoride (MgF2) materials of varying purities, shapes, and sizes to cater to your specific needs.

We offer a diverse range of specifications and sizes for sputtering targets (circular, square, tubular, irregular), coating materials, cylinders, cones, particles, foils, powders, 3D printing powders, nanometer powders, wire rods, ingots, and blocks, among others.

Details

Magnesium Fluoride (MgF2) Sputtering Target
Magnesium Fluoride (MgF2) Sputtering Target
Magnesium Fluoride (MgF2) particles
Magnesium Fluoride (MgF2) particles

About Magnesium Fluoride (MgF2)

Magnesium fluoride (MgF2) is a white crystalline salt that is transparent across a wide range of wavelengths. It is commonly used in optics and has commercial applications in space telescopes. The rare mineral sellaite naturally occurs as MgF2.

MgF2 is a water-insoluble magnesium source ideal for oxygen-sensitive applications such as metal production. Fluoride compounds have various applications in current technologies and science, including oil refining, etching, synthetic organic chemistry, and pharmaceutical manufacturing.

In 2013, researchers at the Max Planck Institute for Quantum Optics used MgF2 to create a mid-infrared optical frequency comb composed of crystalline microresonators, potentially advancing molecular spectroscopy. Fluorides are also used for metal alloying and optical deposition. MgF2 is readily available in most volumes, including high purity, submicron, and nanopowder forms.

Ingredient Quality Control

Raw material composition analysis
Through the use of equipment such as ICP and GDMS, the content of metal impurities is detected and analyzed to ensure that it meets the purity standard;

Non-metallic impurities are detected by equipment such as carbon and sulfur analyzers, nitrogen and oxygen analyzers.
Metallographic flaw detection analysis
The target material is inspected using flaw detection equipment to ensure that there are no defects or shrinkage holes inside the product;

Through metallographic testing, the internal grain structure of the target material is analyzed to ensure that the grains are fine and dense.
Appearance and dimension inspection
Product dimensions are measured using micrometers and precision calipers to ensure compliance with drawings;

The surface finish and cleanliness of the product are measured using a surface cleanliness meter.

Conventional Sputtering Target Sizes

Preparation process
hot isostatic pressing, vacuum melting, etc.
Sputtering target shape
plane sputtering target, multi-arc sputtering target, step sputtering target, special-shaped sputtering target
Round sputtering target size
Diameter: 25.4mm / 50mm / 50.8mm / 60mm / 76.2mm / 80mm / 100mm / 101.6mm / 152.4mm
Thickness: 3mm / 4mm / 5mm / 6mm / 6.35mm
Size can be customized.
Square sputtering target size
50×50×3mm / 100×100×4mm / 300×300×5mm, size can be customized

Available Metal Forms

Metal Forms Details

We manufacture almost all the metals listed on the periodic table in a wide range of forms and purities, as well as standard sizes and dimensions. We can also produce custom-made products to meet specific customer requirements, such as size, shape, surface area, composition, and more. The following list provides a sample of the forms we offer, but it is not exhaustive. If you need laboratory consumables, please contact us directly to request a quote.

  • Flat/Planar Forms: Board, Film, Foil, Microfoil, Microleaf, Paper, Plate, Ribbon, Sheet, Strip, Tape, Wafer
  • Preformed Shapes: Anodes, Balls, Bands, Bars, Boats, Bolts, Briquettes, Cathodes, Circles, Coils, Crucibles, Crystals, Cubes, Cups, Cylinders, Discs, Electrodes, Fibers, Filaments, Flanges, Grids, Lenses, Mandrels, Nuts, Parts, Prisms, Pucks, Rings, Rods, Shapes, Shields, Sleeves, Springs, Squares, Sputtering Targets, Sticks, Tubes, Washers, Windows, Wires
  • Microsizes: Beads, Bits, Capsules, Chips, Coins, Dust, Flakes, Grains, Granules, Micropowder, Needles, Particles, Pebbles, Pellets, Pins, Pills, Powder, Shavings, Shot, Slugs, Spheres, Tablets
  • Macrosizes: Billets, Chunks, Cuttings, Fragments, Ingots, Lumps, Nuggets, Pieces, Punchings, Rocks, Scraps, Segments, Turnings
  • Porous and Semi-Porous: Fabric, Foam, Gauze, Honeycomb, Mesh, Sponge, Wool
  • Nanoscale: Nanoparticles, Nanopowders, Nanofoils, Nanotubes, Nanorods, Nanoprisms
  • Others: Concentrate, Ink, Paste, Precipitate, Residue, Samples, Specimens

KinTek specializes in the manufacturing of high-purity and ultra-high-purity materials with a purity range of 99.999% (5N), 99.9999% (6N), 99.99995% (6N5), and in some cases, up to 99.99999% (7N). Our materials are available in specific grades, including UP/UHP, semiconductor, electronic, deposition, fiber optic, and MBE grades. Our high-purity metals, oxides, and compounds are specifically crafted to meet the rigorous demands of high-technology applications and are ideal for use as dopants and precursor materials for thin film deposition, crystal growth of semiconductors, and synthesis of nanomaterials. These materials find use in advanced microelectronics, solar cells, fuel cells, optical materials, and other cutting-edge applications.

Packaging

We use vacuum packaging for our high-purity materials, and each material has specific packaging tailored to its unique characteristics. For instance, our Hf sputter target is externally tagged and labeled to facilitate efficient identification and quality control. We take great care to prevent any damage that could occur during storage or transportation.

FAQ

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is sputtering target?

A sputtering target is a material used in the process of sputter deposition, which involves breaking up the target material into tiny particles that form a spray and coat a substrate, such as a silicon wafer. Sputtering targets are typically metallic elements or alloys, although some ceramic targets are available. They come in a variety of sizes and shapes, with some manufacturers creating segmented targets for larger sputtering equipment. Sputtering targets have a wide range of applications in fields such as microelectronics, thin film solar cells, optoelectronics, and decorative coatings due to their ability to deposit thin films with high precision and uniformity.

What are high purity materials?

High purity materials refer to substances that are free from impurities and possess a high level of chemical homogeneity. These materials are essential in various industries, particularly in the field of advanced electronics, where impurities can significantly affect the performance of devices. High purity materials are obtained through various methods, including chemical purification, vapor-phase deposition, and zone refining. In the preparation of electronic grade single crystal diamond, for example, a high-purity raw material gas and an efficient vacuum system are necessary to achieve the desired level of purity and homogeneity.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

How are sputtering targets made?

Sputtering targets are made using a variety of manufacturing processes depending on the properties of the target material and its application. These include vacuum melting and rolling, hot-pressed, special press-sintered process, vacuum hot-pressed, and forged methods. Most sputtering target materials can be fabricated into a wide range of shapes and sizes, with circular or rectangular shapes being the most common. Targets are usually made from metallic elements or alloys, but ceramic targets can also be used. Compound sputtering targets are also available, made from a variety of compounds including oxides, nitrides, borides, sulphides, selenides, tellurides, carbides, crystalline, and composite mixtures.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What is sputtering target used for?

Sputtering targets are used in a process called sputtering to deposit thin films of a material onto a substrate using ions to bombard the target. These targets have a wide range of applications in various fields, including microelectronics, thin film solar cells, optoelectronics, and decorative coatings. They allow for the deposition of thin films of materials onto a variety of substrates with high precision and uniformity, making them an ideal tool for producing precision products. Sputtering targets come in various shapes and sizes and can be specialized to meet the specific requirements of the application.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are sputtering targets for electronics?

Sputtering targets for electronics are thin discs or sheets of materials such as aluminum, copper, and titanium that are used to deposit thin films onto silicon wafers to create electronic devices like transistors, diodes, and integrated circuits. These targets are used in a process called sputtering, in which atoms of the target material are physically ejected from the surface and deposited onto a substrate by bombarding the target with ions. Sputtering targets for electronics are essential in the production of microelectronics and typically require high precision and uniformity to ensure quality devices.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What is the lifetime of a sputtering target?

The lifetime of a sputtering target depends on factors such as the material composition, purity, and the specific application it is being used for. Generally, targets can last for several hundred to a few thousand hours of sputtering, but this can vary widely depending on the specific conditions of each run. Proper handling and maintenance can also extend the lifetime of a target. In addition, the use of rotary sputtering targets can increase runtimes and reduce the occurrence of defects, making them a more cost-effective option for high volume processes.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

View more faqs for this product

4.9

out of

5

Impressive product quality and timely delivery! KINTEK SOLUTION is my go-to source for Magnesium Fluoride materials.

Katelyn G. Rosato

4.7

out of

5

Excellent customer service and prompt response to queries. I highly recommend KINTEK SOLUTION for lab materials.

Dr. Valerie M. Perez

4.8

out of

5

Magnesium Fluoride from KINTEK SOLUTION has proven to be a reliable choice for our research. Consistent quality and purity!

Mr. Fabio S. Balderas

4.6

out of

5

KINTEK SOLUTION provides exceptional Magnesium Fluoride materials at competitive prices. Their commitment to customer satisfaction is commendable.

Dr. Amanda R. Dalton

4.9

out of

5

KINTEK SOLUTION's Magnesium Fluoride products have been instrumental in our research breakthroughs. Outstanding performance and purity!

Dr. Carlos J. Adams

4.7

out of

5

KINTEK SOLUTION has exceeded our expectations with their Magnesium Fluoride materials. Their attention to detail and quality is unmatched.

Mr. Hugo B. Reyes

4.8

out of

5

KINTEK SOLUTION's Magnesium Fluoride materials have been a game-changer for our laboratory. Highly recommended for their reliability and consistency.

Ms. Evelyn G. Young

4.6

out of

5

KINTEK SOLUTION's Magnesium Fluoride materials have enabled us to push the boundaries of our research. Exceptional quality and purity!

Dr. David R. Harris

4.9

out of

5

KINTEK SOLUTION is our trusted partner for Magnesium Fluoride materials. Their products have consistently met our stringent requirements.

Mr. Antonio J. White

4.7

out of

5

KINTEK SOLUTION's commitment to innovation and customer satisfaction is evident in their Magnesium Fluoride materials. Highly recommended!

Ms. Maria S. Green

PDF of LM-MgF2

Download

Catalog of Lab Materials

Download

Catalog of Sputtering Targets

Download

Catalog of High Purity Materials

Download

Catalog of Thin Film Deposition Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Calcium Fluoride (CaF2) Sputtering Target / Powder / Wire / Block / Granule

Calcium Fluoride (CaF2) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Calcium Fluoride materials for laboratory use? Our expert team tailors different purities, shapes, and sizes to meet your specific needs. Browse our range of sputtering targets, coating materials, powders, and more. Get a quote today.

Sodium Fluoride (NaF) Sputtering Target / Powder / Wire / Block / Granule

Sodium Fluoride (NaF) Sputtering Target / Powder / Wire / Block / Granule

Looking for Sodium Fluoride (NaF) materials? We offer tailored solutions of different purities, shapes, and sizes at affordable prices. Find sputtering targets, coating materials, powders, and more. Contact us today.

High Purity Magnesium Oxide (MgO) Sputtering Target / Powder / Wire / Block / Granule

High Purity Magnesium Oxide (MgO) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of Magnesium Oxide (MgO) materials tailored for laboratory use at affordable prices. We offer various shapes and sizes, including sputtering targets, coatings, powders, and more.

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Get top-quality Potassium Fluoride (KF) materials for your lab needs at great prices. Our tailored purities, shapes, and sizes suit your unique requirements. Find sputtering targets, coating materials, and more.

Barium Fluoride (BaF2) Sputtering Target / Powder / Wire / Block / Granule

Barium Fluoride (BaF2) Sputtering Target / Powder / Wire / Block / Granule

Shop Barium Fluoride (BaF2) materials at affordable prices. We tailor to your needs with a range of sputtering targets, coating materials, powders, and more. Order now.

Strontium Fluoride (SrF2) Sputtering Target / Powder / Wire / Block / Granule

Strontium Fluoride (SrF2) Sputtering Target / Powder / Wire / Block / Granule

Looking for Strontium Fluoride (SrF2) materials for your laboratory? Look no further! We offer a range of sizes and purities, including sputtering targets, coatings, and more. Order now at reasonable prices.

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Neodymium Fluoride (NdF3) materials for your laboratory? We offer a wide range of options, from sputtering targets to powders, all customizable to meet your unique needs. Discover our affordable prices now.

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Shop Erbium Fluoride (ErF3) materials of varying purities, shapes, and sizes for laboratory use. Our products include sputtering targets, coating materials, powders, and more. Browse now!

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Ytterbium Fluoride (YbF3) materials for your laboratory needs at affordable prices. We offer customized shapes and sizes, including sputtering targets, coating materials, powders, and more. Contact us today!

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Magnesium (Mn) materials for your lab needs? Our custom sizes, shapes, and purities have got you covered. Explore our diverse selection today!

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

Iron Gallium Alloy (FeGa) Sputtering Target / Powder / Wire / Block / Granule

Iron Gallium Alloy (FeGa) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Iron Gallium Alloy (FeGa) materials for laboratory use at reasonable prices. We customize materials to suit your unique needs. Check our range of specifications and sizes!

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Yttrium Fluoride (YF3) materials for laboratory use? Our affordable prices and expertise in producing custom shapes and sizes make us the ideal choice. Shop sputtering targets, coating materials, powders, and more today.

Infrared thermal imaging / infrared temperature measurement double-sided coated germanium (Ge) lens

Infrared thermal imaging / infrared temperature measurement double-sided coated germanium (Ge) lens

Germanium lenses are durable, corrosion-resistant optical lenses suited for harsh environments and applications exposed to the elements.

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Barium Titanate (LaF3) materials for your lab? Our tailored solutions fit your unique needs, with a wide range of shapes, sizes, and purities available. Explore our selection of sputtering targets, coating materials, powders, and more.

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Molybdenum Carbide (Mo2C) materials for your lab? Look no further! Our expertly-produced materials come in a range of purities, shapes, and sizes to meet your unique needs. Shop sputtering targets, coatings, powders, and more today.

Optical quartz plate JGS1 / JGS2 / JGS3

Optical quartz plate JGS1 / JGS2 / JGS3

The quartz plate is a transparent, durable, and versatile component widely used in various industries. Made from high-purity quartz crystal, it exhibits excellent thermal and chemical resistance.

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

High Purity Molybdenum (Mo) Sputtering Target / Powder / Wire / Block / Granule

High Purity Molybdenum (Mo) Sputtering Target / Powder / Wire / Block / Granule

Looking for Molybdenum (Mo) materials for your laboratory? Our experts produce custom shapes and sizes at reasonable prices. Choose from a wide selection of specifications and sizes. Order now.

Samarium Fluoride (SmF3) Sputtering Target / Powder / Wire / Block / Granule

Samarium Fluoride (SmF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Samarium Fluoride (SmF3) materials for your lab? Look no further! Our tailored solutions come in a range of purities, shapes, and sizes to suit your unique needs. Contact us today!