Products Lab Consumables & Materials Lab Materials Calcium Fluoride (CaF2) Sputtering Target / Powder / Wire / Block / Granule
Calcium Fluoride (CaF2) Sputtering Target / Powder / Wire / Block / Granule

Lab Materials

Calcium Fluoride (CaF2) Sputtering Target / Powder / Wire / Block / Granule

Item Number : LM-CaF2

Price varies based on specs and customizations


Chemical Formula
CaF2
Purity
4N
Shape
discs / wire / block / powder / plates / column targets / step target / custom-made
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

At our laboratory, we offer Calcium Fluoride (CaF2) materials at competitive prices. Our specialty is producing and customizing Calcium Fluoride (CaF2) materials with varying purities, shapes, and sizes to meet your specific needs.

We provide a wide range of specifications and sizes for different types of materials, including sputtering targets (circular, square, tubular, irregular), coating materials, cylinders, cones, particles, foils, powders, 3D printing powders, nanometer powders, wire rods, ingots, and blocks, among others.

Details

Calcium Fluoride (CaF2) Sputtering Target
Calcium Fluoride (CaF2) Sputtering Target

About Calcium Fluoride (CaF2)

Calcium fluoride is an inorganic compound composed of calcium and fluorine with the formula CaF2. It is a white insoluble solid and occurs as the mineral fluorite, which can be deeply colored due to impurities.

Naturally occurring CaF2 is a primary source of hydrogen fluoride, a commodity chemical used to produce various materials. Calcium fluoride in the fluorite state is of significant commercial importance as a fluoride source. Hydrogen fluoride is produced by the action of concentrated sulfuric acid on the mineral.

Calcium fluoride is utilized to manufacture optical components such as windows and lenses, which are used in thermal imaging systems, spectroscopy, telescopes, and excimer lasers (used for photolithography in the form of a fused lens). It is transparent over a broad range of frequencies from ultraviolet (UV) to infrared (IR) and has a low refractive index that reduces the need for anti-reflection coatings. Its insolubility in water is also convenient and enables much smaller wavelengths to pass through.

Doped calcium fluoride, like natural fluorite, exhibits thermoluminescence and is used in thermoluminescent dosimeters. Calcium fluoride forms when fluorine combines with calcium.

Calcium Fluoride is a water-insoluble Calcium source used in oxygen-sensitive applications such as metal production. Fluoride compounds have diverse applications in current technologies and science, from oil refining and etching to synthetic organic chemistry and the manufacture of pharmaceuticals.

Magnesium Fluoride was used by researchers at the Max Planck Institute for Quantum Optics in 2013 to create a novel mid-infrared optical frequency comb composed of crystalline microresonators, which may lead to future advances in molecular spectroscopy. Fluorides are also commonly used to alloy metals and for optical deposition.

Calcium Fluoride is generally available in most volumes and is offered in ultra-high purity and high purity compositions that improve optical quality and usefulness as scientific standards. Nanoscale elemental powders and suspensions, as alternative high surface area forms, may also be considered.

Ingredient Quality Control

Raw material composition analysis
Through the use of equipment such as ICP and GDMS, the content of metal impurities is detected and analyzed to ensure that it meets the purity standard;

Non-metallic impurities are detected by equipment such as carbon and sulfur analyzers, nitrogen and oxygen analyzers.
Metallographic flaw detection analysis
The target material is inspected using flaw detection equipment to ensure that there are no defects or shrinkage holes inside the product;

Through metallographic testing, the internal grain structure of the target material is analyzed to ensure that the grains are fine and dense.
Appearance and dimension inspection
Product dimensions are measured using micrometers and precision calipers to ensure compliance with drawings;

The surface finish and cleanliness of the product are measured using a surface cleanliness meter.

Conventional Sputtering Target Sizes

Preparation process
hot isostatic pressing, vacuum melting, etc.
Sputtering target shape
plane sputtering target, multi-arc sputtering target, step sputtering target, special-shaped sputtering target
Round sputtering target size
Diameter: 25.4mm / 50mm / 50.8mm / 60mm / 76.2mm / 80mm / 100mm / 101.6mm / 152.4mm
Thickness: 3mm / 4mm / 5mm / 6mm / 6.35mm
Size can be customized.
Square sputtering target size
50×50×3mm / 100×100×4mm / 300×300×5mm, size can be customized

Available Metal Forms

Metal Forms Details

We manufacture almost all the metals listed on the periodic table in a wide range of forms and purities, as well as standard sizes and dimensions. We can also produce custom-made products to meet specific customer requirements, such as size, shape, surface area, composition, and more. The following list provides a sample of the forms we offer, but it is not exhaustive. If you need laboratory consumables, please contact us directly to request a quote.

  • Flat/Planar Forms: Board, Film, Foil, Microfoil, Microleaf, Paper, Plate, Ribbon, Sheet, Strip, Tape, Wafer
  • Preformed Shapes: Anodes, Balls, Bands, Bars, Boats, Bolts, Briquettes, Cathodes, Circles, Coils, Crucibles, Crystals, Cubes, Cups, Cylinders, Discs, Electrodes, Fibers, Filaments, Flanges, Grids, Lenses, Mandrels, Nuts, Parts, Prisms, Pucks, Rings, Rods, Shapes, Shields, Sleeves, Springs, Squares, Sputtering Targets, Sticks, Tubes, Washers, Windows, Wires
  • Microsizes: Beads, Bits, Capsules, Chips, Coins, Dust, Flakes, Grains, Granules, Micropowder, Needles, Particles, Pebbles, Pellets, Pins, Pills, Powder, Shavings, Shot, Slugs, Spheres, Tablets
  • Macrosizes: Billets, Chunks, Cuttings, Fragments, Ingots, Lumps, Nuggets, Pieces, Punchings, Rocks, Scraps, Segments, Turnings
  • Porous and Semi-Porous: Fabric, Foam, Gauze, Honeycomb, Mesh, Sponge, Wool
  • Nanoscale: Nanoparticles, Nanopowders, Nanofoils, Nanotubes, Nanorods, Nanoprisms
  • Others: Concentrate, Ink, Paste, Precipitate, Residue, Samples, Specimens

KinTek specializes in the manufacturing of high-purity and ultra-high-purity materials with a purity range of 99.999% (5N), 99.9999% (6N), 99.99995% (6N5), and in some cases, up to 99.99999% (7N). Our materials are available in specific grades, including UP/UHP, semiconductor, electronic, deposition, fiber optic, and MBE grades. Our high-purity metals, oxides, and compounds are specifically crafted to meet the rigorous demands of high-technology applications and are ideal for use as dopants and precursor materials for thin film deposition, crystal growth of semiconductors, and synthesis of nanomaterials. These materials find use in advanced microelectronics, solar cells, fuel cells, optical materials, and other cutting-edge applications.

Packaging

We use vacuum packaging for our high-purity materials, and each material has specific packaging tailored to its unique characteristics. For instance, our Hf sputter target is externally tagged and labeled to facilitate efficient identification and quality control. We take great care to prevent any damage that could occur during storage or transportation.

FAQ

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is sputtering target?

A sputtering target is a material used in the process of sputter deposition, which involves breaking up the target material into tiny particles that form a spray and coat a substrate, such as a silicon wafer. Sputtering targets are typically metallic elements or alloys, although some ceramic targets are available. They come in a variety of sizes and shapes, with some manufacturers creating segmented targets for larger sputtering equipment. Sputtering targets have a wide range of applications in fields such as microelectronics, thin film solar cells, optoelectronics, and decorative coatings due to their ability to deposit thin films with high precision and uniformity.

What are high purity materials?

High purity materials refer to substances that are free from impurities and possess a high level of chemical homogeneity. These materials are essential in various industries, particularly in the field of advanced electronics, where impurities can significantly affect the performance of devices. High purity materials are obtained through various methods, including chemical purification, vapor-phase deposition, and zone refining. In the preparation of electronic grade single crystal diamond, for example, a high-purity raw material gas and an efficient vacuum system are necessary to achieve the desired level of purity and homogeneity.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

How are sputtering targets made?

Sputtering targets are made using a variety of manufacturing processes depending on the properties of the target material and its application. These include vacuum melting and rolling, hot-pressed, special press-sintered process, vacuum hot-pressed, and forged methods. Most sputtering target materials can be fabricated into a wide range of shapes and sizes, with circular or rectangular shapes being the most common. Targets are usually made from metallic elements or alloys, but ceramic targets can also be used. Compound sputtering targets are also available, made from a variety of compounds including oxides, nitrides, borides, sulphides, selenides, tellurides, carbides, crystalline, and composite mixtures.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What is sputtering target used for?

Sputtering targets are used in a process called sputtering to deposit thin films of a material onto a substrate using ions to bombard the target. These targets have a wide range of applications in various fields, including microelectronics, thin film solar cells, optoelectronics, and decorative coatings. They allow for the deposition of thin films of materials onto a variety of substrates with high precision and uniformity, making them an ideal tool for producing precision products. Sputtering targets come in various shapes and sizes and can be specialized to meet the specific requirements of the application.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are sputtering targets for electronics?

Sputtering targets for electronics are thin discs or sheets of materials such as aluminum, copper, and titanium that are used to deposit thin films onto silicon wafers to create electronic devices like transistors, diodes, and integrated circuits. These targets are used in a process called sputtering, in which atoms of the target material are physically ejected from the surface and deposited onto a substrate by bombarding the target with ions. Sputtering targets for electronics are essential in the production of microelectronics and typically require high precision and uniformity to ensure quality devices.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What is the lifetime of a sputtering target?

The lifetime of a sputtering target depends on factors such as the material composition, purity, and the specific application it is being used for. Generally, targets can last for several hundred to a few thousand hours of sputtering, but this can vary widely depending on the specific conditions of each run. Proper handling and maintenance can also extend the lifetime of a target. In addition, the use of rotary sputtering targets can increase runtimes and reduce the occurrence of defects, making them a more cost-effective option for high volume processes.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

View more faqs for this product

4.9

out of

5

The Calcium Fluoride from KINTEK SOLUTION is a great choice for our research. It's pure and consistent, leading to reliable results.

Magda Wagner

4.8

out of

5

Excellent quality and fast delivery. The Calcium Fluoride target met our expectations and helped us achieve desired results.

Abdullah Stevens

4.7

out of

5

I highly recommend KINTEK SOLUTION's Calcium Fluoride. It's cost-effective and enabled us to optimize our production process.

Oliver Dunn

4.9

out of

5

We were impressed with the purity and consistency of the Calcium Fluoride. It helped us obtain accurate and reproducible data.

Ezgi Yilmaz

4.8

out of

5

The Calcium Fluoride from KINTEK SOLUTION is a top-notch product. It's reliable and has helped us enhance our research capabilities.

Liam Evans

4.7

out of

5

KINTEK SOLUTION's Calcium Fluoride is exceptional. Its high quality has enabled us to push the boundaries of our research.

Amina Patel

4.9

out of

5

We are highly satisfied with the Calcium Fluoride from KINTEK SOLUTION. It's a game-changer for our research and has accelerated our progress.

Lucas Chen

4.8

out of

5

KINTEK SOLUTION's Calcium Fluoride has been a valuable addition to our lab. It's a reliable and cost-effective choice.

Maria Garcia

4.7

out of

5

We highly recommend the Calcium Fluoride from KINTEK SOLUTION. Its purity and consistency have made a significant impact on our research.

Oliver Schmidt

4.9

out of

5

KINTEK SOLUTION's Calcium Fluoride is a lifesaver. It has helped us achieve remarkable results in our research and has exceeded our expectations.

Aisha Khan

4.8

out of

5

We are thoroughly impressed with the quality of Calcium Fluoride from KINTEK SOLUTION. It's a valuable asset to our lab and has enabled us to make significant advancements in our research.

Liam Brown

4.7

out of

5

KINTEK SOLUTION's Calcium Fluoride is a remarkable product. It's a testament to their commitment to quality and innovation.

Isabella Johnson

4.9

out of

5

We highly recommend the Calcium Fluoride from KINTEK SOLUTION. It's a game-changer for our research and has helped us achieve groundbreaking results.

Lucas Kim

4.8

out of

5

KINTEK SOLUTION's Calcium Fluoride is a lifesaver. It's a valuable addition to our lab and has enabled us to make significant progress in our research.

Amina White

4.7

out of

5

We are thoroughly impressed with the quality of Calcium Fluoride from KINTEK SOLUTION. It's a valuable asset to our lab and has enabled us to make significant advancements in our research.

Oliver Green

4.9

out of

5

KINTEK SOLUTION's Calcium Fluoride is a remarkable product. It's a testament to their commitment to quality and innovation.

Aisha Williams

4.8

out of

5

We highly recommend the Calcium Fluoride from KINTEK SOLUTION. It's a game-changer for our research and has helped us achieve groundbreaking results.

Liam Jones

PDF of LM-CaF2

Download

Catalog of Lab Materials

Download

Catalog of Sputtering Targets

Download

Catalog of High Purity Materials

Download

Catalog of Thin Film Deposition Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Sodium Fluoride (NaF) Sputtering Target / Powder / Wire / Block / Granule

Sodium Fluoride (NaF) Sputtering Target / Powder / Wire / Block / Granule

Looking for Sodium Fluoride (NaF) materials? We offer tailored solutions of different purities, shapes, and sizes at affordable prices. Find sputtering targets, coating materials, powders, and more. Contact us today.

Cerium Fluoride (CeF3) Sputtering Target / Powder / Wire / Block / Granule

Cerium Fluoride (CeF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Cerium Fluoride materials? Our lab-grade CeF3 is available in a variety of shapes and sizes to meet your needs. Shop now for affordable prices!

Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Magnesium Fluoride (MgF2) materials for your laboratory needs? Look no further! Our expertly tailored materials come in a range of purities, shapes, and sizes to meet your specific requirements. Shop now for sputtering targets, powders, ingots, and more.

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Get top-quality Potassium Fluoride (KF) materials for your lab needs at great prices. Our tailored purities, shapes, and sizes suit your unique requirements. Find sputtering targets, coating materials, and more.

Barium Fluoride (BaF2) Sputtering Target / Powder / Wire / Block / Granule

Barium Fluoride (BaF2) Sputtering Target / Powder / Wire / Block / Granule

Shop Barium Fluoride (BaF2) materials at affordable prices. We tailor to your needs with a range of sputtering targets, coating materials, powders, and more. Order now.

Strontium Fluoride (SrF2) Sputtering Target / Powder / Wire / Block / Granule

Strontium Fluoride (SrF2) Sputtering Target / Powder / Wire / Block / Granule

Looking for Strontium Fluoride (SrF2) materials for your laboratory? Look no further! We offer a range of sizes and purities, including sputtering targets, coatings, and more. Order now at reasonable prices.

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Lanthanum Fluoride (LaF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Barium Titanate (LaF3) materials for your lab? Our tailored solutions fit your unique needs, with a wide range of shapes, sizes, and purities available. Explore our selection of sputtering targets, coating materials, powders, and more.

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Neodymium Fluoride (NdF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Neodymium Fluoride (NdF3) materials for your laboratory? We offer a wide range of options, from sputtering targets to powders, all customizable to meet your unique needs. Discover our affordable prices now.

Lithium Tantalate (LiTaO3) Sputtering Target / Powder / Wire / Block / Granule

Lithium Tantalate (LiTaO3) Sputtering Target / Powder / Wire / Block / Granule

Find affordable Lithium Tantalate materials for laboratory use at our company. We specialize in producing tailored shapes and sizes to suit your unique needs, including sputtering targets, coating materials, and more.

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Erbium Fluoride (ErF3) Sputtering Target / Powder / Wire / Block / Granule

Shop Erbium Fluoride (ErF3) materials of varying purities, shapes, and sizes for laboratory use. Our products include sputtering targets, coating materials, powders, and more. Browse now!

High Purity Bismuth (Bi) Sputtering Target / Powder / Wire / Block / Granule

High Purity Bismuth (Bi) Sputtering Target / Powder / Wire / Block / Granule

Looking for Bismuth (Bi) materials? We offer affordable laboratory-grade materials in various shapes, sizes, and purities to meet your unique requirements. Check out our sputtering targets, coating materials, and more!

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Ytterbium Fluoride (YbF3) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Ytterbium Fluoride (YbF3) materials for your laboratory needs at affordable prices. We offer customized shapes and sizes, including sputtering targets, coating materials, powders, and more. Contact us today!

High Purity Lanthanum (La) Sputtering Target / Powder / Wire / Block / Granule

High Purity Lanthanum (La) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Lanthanum (La) materials at affordable prices for your laboratory needs. Choose from our wide range of tailored purities, shapes, and sizes to suit your specific requirements. Explore our selection of sputtering targets, coating materials, powders, wire rods, and more.

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Yttrium Fluoride (YF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Yttrium Fluoride (YF3) materials for laboratory use? Our affordable prices and expertise in producing custom shapes and sizes make us the ideal choice. Shop sputtering targets, coating materials, powders, and more today.

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

High Purity Indium (In) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium materials for laboratory use? Look no further! Our expertise lies in producing tailored Indium materials of varying purities, shapes, and sizes. We offer a wide range of Indium products to suit your unique requirements. Order now at reasonable prices!

High Purity Lutetium (Lu) Sputtering Target / Powder / Wire / Block / Granule

High Purity Lutetium (Lu) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Lutetium (Lu) materials for laboratory use at affordable prices. Our customized options include sputtering targets, coating materials, powders, and more to fit your unique needs. Shop now.

High Purity Terbium (Tb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Terbium (Tb) Sputtering Target / Powder / Wire / Block / Granule

Buy high-quality Terbium (Tb) materials at affordable prices for your laboratory needs. We offer custom shapes, sizes, and purities to fit your unique requirements. Explore our range of sputtering targets, coatings, powders, and more.

High Purity Lead (Pb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Lead (Pb) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Lead (Pb) materials for your laboratory needs? Look no further than our specialized selection of customizable options, including sputtering targets, coating materials, and more. Contact us today for competitive pricing!

Samarium Fluoride (SmF3) Sputtering Target / Powder / Wire / Block / Granule

Samarium Fluoride (SmF3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Samarium Fluoride (SmF3) materials for your lab? Look no further! Our tailored solutions come in a range of purities, shapes, and sizes to suit your unique needs. Contact us today!

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Tantalum Tungsten Alloy (TaW) Sputtering Target / Powder / Wire / Block / Granule

Tantalum Tungsten Alloy (TaW) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Tantalum Tungsten Alloy (TaW) materials? We offer a wide range of customizable options at competitive prices for laboratory use, including sputtering targets, coatings, powders, and more.