Analytical techniques used in laboratories are diverse and tailored to specific types of analysis and sample properties. These techniques can broadly be categorized into elemental analysis, particle size analysis, and sample preparation for spectroscopy.
What are the Analytical Techniques Used in Laboratories? 5 Key Methods Explained
1. Elemental Analysis
Laboratories often use techniques such as optical emission spectrometry (OES) and laser-induced breakdown spectrometry (LIBS) for direct elemental analysis of workpieces.
These methods do not require extensive sample preparation.
However, they have limitations in analytical capabilities compared to benchtop XRF spectroscopy.
Additionally, they may leave visible marks on the workpieces, which can be a drawback despite their convenience.
2. Particle Size Analysis
The determination of particle sizes and distributions is crucial in many analytical and industrial processes.
Common methods include sieve analysis, direct image analysis (both static and dynamic), static light scattering (SLS), and dynamic light scattering (DLS).
Sieve analysis, for instance, is a traditional method that can measure solid particles ranging from 125 mm down to 20 μm.
This method is specified in numerous national and international standards, detailing the required sieve sizes, sample sizes, test durations, and expected results.
3. Sample Preparation for Spectroscopy
For spectroscopic analysis, such as Fourier Transform Infrared Spectroscopy (FTIR) and X-ray fluorescence (XRF), sample preparation is essential.
Techniques like the pressed pellet technique involve mixing a small amount of finely ground solid sample with potassium bromide and compressing it into a thin, transparent pellet using a hydraulic press.
This preparation allows for the analysis of the sample without interference from the sample's physical form.
4. Equipment and Materials
The use of specialized lab equipment like platinum labware, high-performance fusion furnaces, and chemistry-specific molds enhances the accuracy of both quantitative and qualitative analysis.
These tools facilitate non-destructive testing, ensuring that the sample integrity is maintained throughout the analysis process.
5. Summary
Laboratory analytical techniques are diverse and tailored to the specific needs of the sample and the type of data required.
From elemental analysis to particle size determination and sample preparation for spectroscopy, each method has its advantages and limitations.
The choice of technique depends on the specific requirements of the analysis.
Continue exploring, consult our experts
Unlock the Precision of Your Lab with KINTEK SOLUTION! Are you looking to elevate your laboratory's analytical capabilities?
Explore our advanced range of instruments and materials designed for elemental analysis, particle size analysis, and sample preparation.
Experience the benefits of high-performance fusion furnaces, precision molds, and state-of-the-art spectroscopy accessories, all tailored to maintain sample integrity and deliver accurate results.
With KINTEK SOLUTION, your analytical goals are just a step away—join us and advance your lab's precision today!