Products Bio-Chem Equipment High Pressure Reactor Hydrothermal Synthesis Reactor
Hydrothermal Synthesis Reactor

High Pressure Reactor

Hydrothermal Synthesis Reactor

Item Number : KR-3H

Price varies based on specs and customizations


Reactor material
304/316L Stainless Steel
Liner material
PTFE / PPL
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

Hydrothermal synthesis reactor is a small reactor commonly used in chemical laboratories, which can be used for small-scale synthesis reactions; it can also use the strong acid or alkali in the tank and the high temperature, high pressure and airtight environment to achieve the purpose of rapid digestion of insoluble substances.

Detail & Parts

Hydrothermal Synthesis Reactor Details

Hydrothermal Synthesis Reactor Details

Hydrothermal Synthesis Reactor Details

Hydrothermal Synthesis Reactor Details

 

Features

  1. Good corrosion resistance, no harmful substances overflow, reduce pollution, and safe to use.
  2. After heating and pressure increase, it can quickly and without damage to dissolve samples that are difficult to dissolve under normal conditions and samples containing volatile elements.
  3. The appearance is beautiful, the structure is reasonable, the operation is simple, the analysis time is shortened, and the data is reliable.
  4. PTFE liner inside, which can produce care and is resistant to acids and alkalis.
  5. It can replace the platinum crucible to solve the problem of sample dissolution in the analysis of trace elements in high-purity alumina.  

Technical specifications

Model 50ml 100ml 150ml 200ml 250ml 300ml 400ml 500ml
Reactor material 304/316L Stainless Steel
Reactor inner size(mm) Ø40*86 Ø49*105 Ø58*125 Ø63*145 Ø65*145 Ø71*147 Ø81*148 Ø91*148
Reactor outer size(mm) Ø53*93 Ø63*113 Ø78*135 Ø83*155 Ø83*155 Ø91*157 Ø103*162 Ø117*162
Liner material PTFE/PPL
Liner inner size(mm) Ø30*69 Ø39*84 Ø45*99 Ø47*118 Ø52*121 Ø56*124 Ø65*122 Ø75*121
Liner outer size(mm) Ø40*78 Ø49*95 Ø58*114 Ø63*115 Ø65*135 Ø71*137 Ø81*137 Ø91*17
Rod size(mm) Ø8*200
Overall size(mm) 65*139 75*160 97*185 107*205 107*205 110*210 120*215 135*215
Overall weight(Kg) 1.65 2.4 4.8 6.1 6.1 6.7 8.1 10.6

Usage Process

Hydrothermal Synthesis Reactor Details

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What is a high pressure reactor?

A high-pressure reactor is an equipment designed to perform chemical reactions or other processes under elevated pressure and temperature conditions. It is used in various industries, such as chemical, petrochemical, pharmaceutical, and materials science, to carry out processes requiring high pressure or temperatures. It includes a pressure vessel, closure, temperature, and pressure control, stirring or mixing mechanism, and ports or connections. High-pressure reactors are useful in studying reaction kinetics, performing catalytic reactions, synthesizing new materials, and developing novel chemical processes. They come in various sizes and designs, with temperature control and agitation options, making them suitable for a wide range of reactions.

What is a glass reactor?

A glass reactor is a laboratory instrument used to facilitate chemical reactions. It provides an environment conducive for reactions and holds the reactants in place, while also allowing for easy monitoring of the progress of the reaction. There are two main types of glass reactors: batch reactors and continuous reactors. Batch reactors are smaller in size and can only handle small quantities of reactants, while continuous reactors allow for the pouring of reactants into the reaction chamber continuously and can handle larger volumes of reactants. Glass reactors are used in a variety of applications, from chemical synthesis to environmental and life science research.

What is a thermal element?

A thermal element is a device that converts electrical energy into heat in order to raise the temperature of an object or space. There are several types of thermal elements, including tubular heating elements, radiative heating elements, and combination heating element systems. Heat transfer occurs through thermal resistance and thermal capacitance, and there are three sources of heat: a power source, a temperature source, and fluid flow. Thermal elements are commonly used in laboratory equipment, as well as in various domestic and industrial applications.

What causes an increase in pressure within a high-pressure reactor?

Increasing pressure inside a pressure reactor can be achieved through various means. One common method is by heating a sealed pressure vessel, where temperature and pressure increase proportionately, impacting reaction kinetics. Alternatively, the reaction occurring inside the vessel can induce pressure, and agitation can accelerate this process.

In situations where heating is unsuitable or insufficient pressure is generated, manual pressurization is possible with a compressed gas source, such as a compressor or a pre-compressed canister of inert gas.

Pressure reactors utilize pressure relief valves to safely regulate and maintain pressure, emphasizing their reliable and safe operation.

What are the advantages of glass reactor?

The advantages of glass reactors are their ability to optimize and replicate chemical reactions, and provide a clear view of the reaction process. They are corrosion-resistant, work with different atmospheric pressures and vacuum, and can be used for a variety of applications such as catalytic research, process engineering, and biomass research. Glass reactors are also designed with safety in mind, allowing for safe processing of solvents and acids. Other benefits include the availability of various options such as heating/cooling systems, vacuum pumps, PH probes, and pressure gauges.

How does a thermal element work?

A thermal element works by converting electrical energy into heat through the process of Joule heating. When an electric current flows through the element, it encounters resistance, and this results in heating of the element. Metal and ceramic heating elements operate on the principle of electric resistance heating, generating heat by resisting the flow of electricity through the material. The coefficient of electrical resistance of the material determines its ability to generate heat proportional to the amount of current flowing through it. The generated heat radiates outwards into the heat treatment chamber, making thermal elements a highly effective method of generating heat.

How does a pressure reactor work?

A pressure reactor is a laboratory device used to conduct chemical reactions at high pressure. It works by controlling the pressure within the reactor vessel, allowing researchers to increase the pressure to desired levels and monitor the reaction as it occurs. The high-pressure environment can alter the reaction rate and outcome, making pressure reactors an essential tool for understanding the underlying mechanisms of chemical reactions. Pressure reactors are designed with safety in mind, featuring high-quality pressure-resistant materials, automatic pressure control systems, and leak-detection systems. They come in various sizes and designs, making them suitable for a wide range of reactions.

What material is glass reactor?

The glass reactor is made of borosilicate glass and has excellent physical and chemical properties. The borosilicate glass is highly resistant to thermal shock, chemical corrosion, and mechanical impacts, making it ideal for use in laboratory equipment. The glass is also transparent, allowing for easy observation of the reaction inside the vessel. The glass reactor is designed to withstand high temperatures and pressure, and it is used in various industries such as petrochemical, pharmaceutical, and dye, among others.

What are the advantages of using thermal elements?

Thermal elements offer several advantages in temperature measurement. Firstly, they have a wide temperature range, allowing for accurate measurements across a broad spectrum, from extremely low temperatures to high temperatures. They also have high sensitivity, meaning they can detect even small temperature changes. Additionally, thermal elements have excellent stability and repeatability, providing reliable and consistent temperature readings over time. They are rugged and durable, making them suitable for use in harsh environments. Thermal elements can also be easily integrated into various systems and instruments for temperature monitoring and control.

What are the different types of glass reactors?

Different types of glass reactors include single-layer, double-layer, and three-layer glass reactors. Other types of reactors include glass-lined reactors, hydrothermal synthesis reactors, magnetic stirring reactors, electric heating reactors, and steam reactors. Glass reactors are commonly used in high and low-temperature reactions, vacuum reactions, solvent synthesis at a constant temperature, distillation and reflux reactions, vacuum distillation reactions, extraction separation reactions, purified reactions, and concentration reactions.

What are the different types of thermal elements?

There are several types of thermal elements, including thermocouples, resistance temperature detectors (RTDs), and thermistors. Thermocouples are made of two dissimilar metals joined together, and they generate a voltage proportional to the temperature difference between their junctions. RTDs are made of pure metals, such as platinum or copper, and their resistance changes with temperature. Thermistors are made of temperature-sensitive semiconducting materials and have a large change in resistance with temperature.

What temperature should a glass reactor be?

The temperature range of a glass reactor may vary depending on the model and its intended use. In general, glass reactors can operate at temperatures as low as -80°C and as high as 300°C. However, the optimal working temperature will depend on the specific reaction being conducted and the chemicals being used. It is important to carefully monitor and control the temperature of the glass reactor to ensure the safety and effectiveness of the reaction.

How should thermal elements be calibrated and maintained?

Calibration and maintenance of thermal elements are crucial to ensure their accuracy and reliability. Regular calibration should be performed using certified reference thermometers or temperature standards to verify the accuracy of temperature readings. Calibration intervals may vary depending on the application and industry requirements. Proper storage and handling of the thermal elements are important to prevent damage or contamination. It is recommended to protect the elements from extreme temperatures, moisture, and corrosive substances. Regular inspection of the element's connections, insulation, and protective sheaths should be carried out, and any damage or wear should be addressed promptly. Proper cleaning of the elements, if required, should be done following manufacturer guidelines. It is important to follow the manufacturer's recommendations for maintenance and consult with experts when necessary.
View more faqs for this product

4.8

out of

5

The reactor is well-made and sturdy. It performs as expected.

Noor Alom

4.9

out of

5

The delivery was fast and the reactor was packaged well. I'm impressed with the quality of the product.

Aisha Amina

4.7

out of

5

The reactor is easy to use and clean. It has made my experiments much easier.

Ayub Khan

5.0

out of

5

The reactor is a great value for the price. It's durable and has all the features I need.

Fatima Ahmed

4.6

out of

5

The reactor is technologically advanced and has helped me to improve my research.

Khalid Hussain

4.8

out of

5

The reactor is a great addition to my laboratory. It's helped me to speed up my experiments.

Mariam Ali

4.9

out of

5

I'm very happy with the reactor. It's well-made and works great.

Saiful Islam

5.0

out of

5

The reactor is the perfect tool for my research. It's easy to use and gives me accurate results.

Shazia Khan

4.7

out of

5

The reactor is a great investment. It's helped me to save time and money.

Tahir Ali

4.8

out of

5

The reactor is a must-have for any laboratory. It's versatile and can be used for a variety of experiments.

Wajid Hussain

PDF - Hydrothermal Synthesis Reactor

Download

Catalog of High Pressure Reactor

Download

Catalog of High Pressure Reactor

Download

Catalog of Glass Reactor

Download

Catalog of Thermal Elements

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Explosive Proof Hydrothermal Synthesis Reactor

Explosive Proof Hydrothermal Synthesis Reactor

Enhance your lab reactions with Explosive Proof Hydrothermal Synthesis Reactor. Corrosion-resistant, safe, and reliable. Order now for faster analysis!

Stainless High Pressure Reactor

Stainless High Pressure Reactor

Discover the versatility of Stainless High Pressure Reactor - a safe and reliable solution for direct and indirect heating. Built with stainless steel, it can withstand high temperatures and pressures. Learn more now.

Mini SS High Pressure Reactor

Mini SS High Pressure Reactor

Mini SS High Pressure Reactor - Ideal for medicine, chemical, and scientific research industries. Programmed heating temp and stirring speed, up to 22Mpa pressure.

10-50L Single Glass Reactor

10-50L Single Glass Reactor

Looking for a reliable single glass reactor system for your lab? Our 10-50L reactor offers precise temperature and stirring control, durable support, and safety features for synthetic reactions, distillation, and more. KinTek's customizable options and tailored services are here to meet your needs.

1-5L Single Glass Reactor

1-5L Single Glass Reactor

Find your ideal glass reactor system for synthetic reactions, distillation, and filtration. Choose from 1-200L volumes, adjustable stirring and temperature control, and custom options. KinTek has you covered!

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

80-150L Single Glass Reactor

80-150L Single Glass Reactor

Looking for a glass reactor system for your lab? Our 80-150L single glass reactor offers controlled temperature, speed, and mechanical functions for synthetic reactions, distillation, and more. With customizable options and tailored services, KinTek has you covered.

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

Lifting/tilting Glass Reactor

Lifting/tilting Glass Reactor

Enhance your synthetic reactions, distillation, and filtration processes with our lifting/tilting glass reactor system. With a wide range of temperature adaptability, accurate stirring control, and solvent-resistant valves, our system guarantees stable and pure results. Explore the features and optional functions today!

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

PTFE centrifuge tube rack

PTFE centrifuge tube rack

The precision-made PTFE test tube racks are completely inert and, due to the high temperature properties of PTFE, these test tube racks can be sterilized (autoclaved) without any problems.

1-5L Jacket Glass Reactor

1-5L Jacket Glass Reactor

Discover the perfect solution for your pharmaceutical, chemical, or biological products with our 1-5L jacket glass reactor system. Custom options available.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

80-150L Jacket Glass Reactor

80-150L Jacket Glass Reactor

Looking for a versatile jacket glass reactor system for your lab? Our 80-150L reactor offers controlled temperature, speed, and mechanical functions for synthetic reactions, distillation, and more. With customizable options and tailored services, KinTek has you covered.

PTFE sampling filter

PTFE sampling filter

PTFE filter element is a commonly used industrial filter element, mainly used to filter corrosive media such as high-purity chemical substances, strong acids, and strong alkalis.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

PTFE container

PTFE container

PTFE container is a container with excellent corrosion resistance and chemical inertness.

10-50L Jacket Glass Reactor

10-50L Jacket Glass Reactor

Discover the Versatile 10-50L Jacket Glass Reactor for Pharmaceutical, Chemical, and Biological Industries. Accurate Stirring Speed Control, Multiple Safety Protections, and Customizable Options Available. KinTek, Your Glass Reactor Partner.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Flat corrosion electrolytic cell

Flat corrosion electrolytic cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Related Articles

Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Explore the detailed workings, applications, and significance of Rotating Disk Electrodes (RDE) in electrochemical research. Discover how RDEs are used in fuel cells, catalyst development, and more.

Find out more
10 Essential Safety Steps for Pressure Reactor Use in Laboratories

10 Essential Safety Steps for Pressure Reactor Use in Laboratories

Safety is paramount when conducting chemical reactions under pressurized conditions. It is important to carefully prepare pressure reactors and laboratory safety equipment to prevent potential hazards that, if not controlled, can have catastrophic consequences. In order to ensure the safety of using a pressure reactor, it is important to understand the specifications of the reactor. Become familiar with the chemistry of the reactor material and make sure it is chemically resistant enough to withstand the substances used in the reaction.

Find out more
Hydrogen Atmosphere Furnaces: Applications, Safety, and Maintenance

Hydrogen Atmosphere Furnaces: Applications, Safety, and Maintenance

Explore the comprehensive guide on hydrogen atmosphere furnaces, including their applications in high-end alloy sintering, safety measures, and maintenance tips. Learn about the types, components, and operational considerations for optimal performance.

Find out more
Revolutionize Your Spectroscopy Analysis with FTIR Pellet Press

Revolutionize Your Spectroscopy Analysis with FTIR Pellet Press

FTIR (Fourier Transform Infrared) spectroscopy is a widely used technique to analyze the chemical composition of various materials. This method is particularly useful for samples that are difficult to analyze using other techniques.

Find out more
5 Essential Applications of Rotary Evaporator in Labs

5 Essential Applications of Rotary Evaporator in Labs

Rotary evaporators, also known as rotovaps, are laboratory instruments used for distillation, concentration, and purification of samples. They are widely used in the chemical, pharmaceutical, and food and beverage industries for various applications.

Find out more
Basic Laboratory Reaction Equipment

Basic Laboratory Reaction Equipment

Overview of essential lab equipment for chemical reactions under various conditions.

Find out more
Laboratory Sample Preparation and Digestion Equipment

Laboratory Sample Preparation and Digestion Equipment

Overview of essential lab equipment for sample preparation and digestion.

Find out more
Choosing the Right Heating Method for Laboratory Experiments

Choosing the Right Heating Method for Laboratory Experiments

Discusses different heating methods in labs and their suitability for various experiments.

Find out more