Products Sample Preparation Isostatic Press Warm Isostatic Press (WIP) Workstation 300Mpa
Warm Isostatic Press (WIP) Workstation 300Mpa

Isostatic Press

Warm Isostatic Press (WIP) Workstation 300Mpa

Item Number : PCIW

Price varies based on specs and customizations


Cylinder inner diameter
Ø150-Ø1000 mm
Cylinder inner height
300-3000 mm
Maximum pressure
300 MPa
Maximum temperature
(heat transfer oil)≤ 250℃
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Warm isostatic pressing (WIP) is a variant of cold isostatic pressing (CIP) that includes a heating element. It employs warm water or a similar medium to apply uniform pressure to powdered products from all directions.

Warm isostatic pressing (WIP) is a cutting-edge technology that enables isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium. This process typically involves utilizing flexible materials as a jacket mold and hydraulic pressure as a pressure medium to shape and press the powder material.

The Warm isostatic pressing process typically involves heating the liquid medium first and then continuously injecting the heated liquid medium into a sealed pressing cylinder through a booster source. To ensure the accuracy of temperature control, the pressing cylinder is equipped with a heating element.

Applications

Warm isostatic pressing is commonly used for powders, binders, and other materials that have special temperature requirements or cannot be molded at room temperature. This technology has revolutionized the manufacturing industry and has enabled the production of complex parts and components with precision and efficiency.

Detail & Parts

side of Warm Isostatic Press (WIP)side of Warm Isostatic Press (WIP)

Warm isostatic press body
Warm isostatic press
Warm isostatic press
Warm isostatic press

Structure chart of Warm Isostatic Press (WIP)

  1. Thick wall high pressure cylinder
  2. Pressure boost module
  3. Movable operation plateform

Warm Isostatic Press structure types

Warm isostatic presses can be categorized into three types of structures: bolt structure, moment tooth structure, and wire winding structure.

  • Bolt structure is suitable for small and medium-sized isostatic pressing equipment. It features high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It generates no noise and doesn't cause oil or water pollution on the site.
  • Moment tooth structure is suitable for medium and large isostatic pressing equipment. It shares the same characteristics as the bolt structure: high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It also generates no noise and doesn't cause oil or water pollution on the site.
  • Steel wire winding structure is suitable for large-scale warm isostatic pressing equipment. This structure is typically utilized in warm isostatic pressing equipment with a cylinder diameter greater than 400mm and a working pressure exceeding 250MPa. It features high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It generates low noise and doesn't cause oil or water pollution on the site.

Advantages

  • Temperature controlling accuracy of ±1℃
  • We have the capability to provide customized design and manufacturing for WIP (water isostatic press) with a pressure capacity of up to 450 MPa.
  • The pressing cylinder is equipped with a heating device to ensure precise temperature control of the liquid medium.
  • High temperature control accuracy
  • The warm isostatic press uses a program-controlled, multi-stage automatic boosting and depressurization process, which can be customized with manual or automatic flow control to meet various pressing process requirements.
  • The ultra-high pressure treatment process is relatively simple, thanks to the fast and uniform pressure transmission speed, and the absence of a pressure gradient.
  • The design of the warm isostatic press adheres to international standards to reduce production and maintenance costs.
  • The valve group design is highly integrated, which reduces the number of high-pressure pipelines, improves equipment safety, and minimizes fault maintenance and repair time.

Safety guarantee

  • The warm isostatic press features a prestressed steel wire winding structure in both the pressing cylinder and the pressure-bearing frame, eliminating the risk of explosion and ensuring a safer and more reliable operation with a service life of over 200,000 cycles.
  • The warm isostatic press also incorporates a long-life and low-maintenance sealing structure design, which enhances equipment reliability.
  • To ensure the safety of personnel and equipment, the warm isostatic press is equipped with automatic and manual safety protection functions. It also boasts multiple mechanical and electrical safety protection and warning designs, meeting the requirements of safe production.

Technical specifications

Model Cylinder inner diameter (mm) Cylinder inner height (mm) Maximum pressure (MPa) Maximum temperature
PCIW150 Ø150 300~500 300

(Deionized water) ≤ 90℃  

(heat transfer oil)≤ 250℃  

PCIW200 Ø200 500-1000
PCIW250 Ø250
PCIW300 Ø300
PCIW350 Ø350 500-1500
PCIW400 Ø400 500~2000
PCIW450 Ø450
PCIW500 Ø500 1000~3000
PCIW630 Ø630
PCIW710 Ø710
PCIW800 Ø800
PCIW910 Ø910
PCIW1000 Ø1000

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is Cold Isostatic Pressing (CIP)?

Cold Isostatic Pressing (CIP) is a process used to compact and mold powders and other materials into a desired shape by applying hydrostatic pressure at room temperature. The process is performed using a flexible mold, typically made of rubber or plastic, that is filled with a liquid pressure medium such as water, oil, or a specialized fluid.

What Is Isostatic Pressing?

Isostatic pressing is a powder metallurgy process that uses equal pressure in all directions to produce uniform density and microstructure in a powder compact.

What Are The Benefits Of Isostatic Pressing?

Isostatic pressing provides uniform strength and density, shape flexibility, a wide range of component sizes, and low tooling cost. It also allows for larger parts, enhances alloying possibilities, reduces lead times, and minimizes material and machining costs.

What Are The Types Of Isostatic Pressing?

There are two main types of isostatic pressing:

  • Hot Isostatic Pressing (HIP): This type of isostatic pressing uses high temperature and high pressure to consolidate and strengthen the material. The material is heated in a sealed container and then subjected to equal pressure from all directions.
  • Cold Isostatic Pressing (CIP): In this type of isostatic pressing, the material is compacted at room temperature using hydraulic pressure. This method is commonly used to form ceramic and metal powders into complex shapes and structures.

What Are The Advantages Of Cold Isostatic Pressing?

  • High green strength: Machining of the compacted material in its green state becomes more feasible.
  • Materials that are hard to press: Isostatic pressing can be performed on powders without the need for water, lubricants, or binders, making it applicable to a wider range of materials.
  • Predictable shrinkage during sintering is achieved due to the high compaction and uniform density.
  • Time and cost savings in post-processing are possible due to the ability to create large, complex, and near-net shapes.
  • Large aspect ratio parts with uniform density can be produced, resulting in improved quality.
  • Green strength enables efficient in-process handling and treatment, reducing production costs.

What Is A Cold Isostatic Press?

A cold isostatic press (CIP) is a machine used to compact and mold powders and other materials into a desired shape.

The process works by filling a flexible mold, usually made of rubber or plastic, with a liquid pressure medium like water, oil, or a specialized fluid. This mold is then placed in a closed container, and equal pressure is applied to each surface to achieve a high-pressure environment.

The pressure results in an increase in the product's density and allows it to take on the desired shape.

Cold isostatic pressing is performed at room temperature, in contrast to hot isostatic pressing which is carried out at higher temperatures.

What Type Of Isostatic Pressing Equipment Do You Have?

Our primary focus is the production of cold isostatic pressing equipment for both laboratory and industrial use.

Application Field Of Cold Isostatic Press?

Cold Isostatic Pressing is widely used for various applications, including the consolidation of ceramic powders, compression of graphite, refractory materials, and electrical insulators, as well as the production of fine ceramics for dental and medical applications.

This technology is also making inroads into new fields such as pressing sputtering targets, coating valve parts in engines to reduce wear on cylinder heads, telecommunications, electronics, aerospace, and automotive industries.

What Are The Wet Bag Process And The Dry Bag Process?

The CIP molding process is divided into two methods: the wet bag process and the dry bag process.

Wet bag process:

In this method, the powder material is placed in a flexible mold bag and placed in a pressure vessel filled with high-pressure liquid. This process is ideal for producing multi-shaped products and is suitable for small to large quantities, including large-sized parts.

Dry bag process:

In the dry bag process, a flexible membrane is integrated into the pressure vessel and is used throughout the pressing process. This membrane separates the pressure fluid from the mold, creating a "dry bag." This method is more hygienic as the flexible mold does not get contaminated with wet powder and requires less cleaning of the vessel. It also features fast cycles, making it ideal for mass producing powder products in an automated process.

What Is Warm Isostatic Pressing (WIP)?

Warm isostatic pressing (WIP) is a variant of cold isostatic pressing (CIP) that includes a heating element. It employs warm water or a similar medium to apply uniform pressure to powdered products from all directions.

Since the powder shaping occurs at a specified temperature, WIP is utilized when it is essential to minimize forming inconsistencies caused by changes in seasons.

What Are The Wearing Parts Of Cold Isostatic Pressing Equipment?

The wearing parts of cold isostatic equipment are mainly various seals, such as various types of seal rings, valve cores and valve seats.

What Types Of Structures Does Warm Isostatic Pressing (WIP) Have?

Warm isostatic presses can be categorized into three types of structures: bolt structure, moment tooth structure, and wire winding structure.

  • Bolt structure is suitable for small and medium-sized isostatic pressing equipment. It features high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It generates no noise and doesn't cause oil or water pollution on the site.
  • Moment tooth structure is suitable for medium and large isostatic pressing equipment. It shares the same characteristics as the bolt structure: high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It also generates no noise and doesn't cause oil or water pollution on the site.
  • Steel wire winding structure is suitable for large-scale warm isostatic pressing equipment. This structure is typically utilized in warm isostatic pressing equipment with a cylinder diameter greater than 400mm and a working pressure exceeding 250MPa. It features high temperature control accuracy, good uniformity in the hot zone, and a compact structure. It generates low noise and doesn't cause oil or water pollution on the site.

Do You Provide Matching Cold Isostatic Press Molds?

We offer a variety of standard mold shapes for customers to experiment or validate their process. Custom mold design services are also available upon request.

How Long Is Your Delivery Time? If I Want To Customize The Instrument, How Long Does It Take?

If the items are available in stock, the delivery time is 6-12 days. We also offer customization services for our customers. The lead time for customized products varies depending on the specifications and can take between 25-55 days.
View more faqs for this product

4.8

out of

5

Kintek's Warm Isostatic Press exceeded my expectations. The 300Mpa Workstation is a game-changer for our laboratory's research.

Laith Al-Janabi

4.9

out of

5

The WIP 300Mpa Workstation is a testament to Kintek's commitment to quality and innovation. It has revolutionized our materials testing process.

Aina Akter

4.7

out of

5

Our lab recently purchased the WIP 300Mpa Workstation, and it's been a worthwhile investment. The machine is user-friendly and provides accurate results.

Maximilian Meyer

4.6

out of

5

The WIP 300Mpa Workstation has significantly improved our workflow. The machine is reliable and has helped us meet our research deadlines.

Olivera Petrovic

4.8

out of

5

Kintek's WIP 300Mpa Workstation is a valuable asset to our lab. It's easy to operate and has helped us achieve consistent results in our experiments.

Valentina Ivanova

4.9

out of

5

The WIP 300Mpa Workstation is a well-built machine that delivers precise results. Kintek's customer service is also top-notch.

Ayaan Khan

4.7

out of

5

Kintek's WIP 300Mpa Workstation is an excellent choice for labs that demand accuracy and efficiency. It's a valuable addition to our research equipment.

Sofia Garcia

4.6

out of

5

The WIP 300Mpa Workstation has helped us streamline our research process. It's a reliable machine that produces high-quality results.

Nikolai Petrov

4.8

out of

5

Kintek's WIP 300Mpa Workstation is a great investment for any lab. It's easy to use and provides consistent results.

Ayesha Patel

4.9

out of

5

The WIP 300Mpa Workstation is a powerful tool that has helped us achieve breakthroughs in our research. It's a must-have for any lab.

Lucas Silva

4.7

out of

5

Kintek's WIP 300Mpa Workstation is user-friendly and delivers accurate results. It's a valuable addition to our laboratory.

Maria Rodriguez

4.6

out of

5

The WIP 300Mpa Workstation has exceeded our expectations. It's a reliable machine that has helped us improve our research efficiency.

Benjamin Cohen

PDF - Warm Isostatic Press (WIP) Workstation 300Mpa

Download

Catalog of Isostatic Press

Download

Catalog of Cold Isostatic Press

Download

Catalog of Lab Isostatic Press Machine

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Split cold isostatic presses are capable of providing higher pressures, making them suitable for testing applications that require high pressure levels.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Vacuum Lamination Press

Vacuum Lamination Press

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Mesh belt controlled atmosphere furnace

Mesh belt controlled atmosphere furnace

Discover our KT-MB mesh belt sintering furnace - perfect for high-temperature sintering of electronic components & glass insulators. Available for open air or controlled atmosphere environments.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

12 inch/24 inch high precision automatic diamond wire cutting machine

12 inch/24 inch high precision automatic diamond wire cutting machine

The high precision automatic diamond wire cutting machine is a versatile cutting tool that uses a diamond wire to cut through a wide range of materials, including conductive and non-conductive materials, ceramics, glass, rocks, gems, jade, meteorites, monocrystalline silicon, silicon carbide, polycrystalline silicon, refractory bricks, epoxy boards, and ferrite bodies. It is especially suitable for cutting various brittle crystals with high hardness, high value, and easy to break.

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Manual Lab Heat Press

Manual Lab Heat Press

Manual hydraulic presses are mainly used in laboratories for various applications such as forging, molding, stamping, riveting and other operations. It allows the creation of complex shapes while saving material.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Diamond wire cutting machines are mainly used for precision cutting of ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, biomedical materials and other material analysis samples. Especially suitable for precision cutting of ultra-thin plates with thickness up to 0.2mm.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

High precision diamond wire cutting machine

High precision diamond wire cutting machine

The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Stainless High Pressure Reactor

Stainless High Pressure Reactor

Discover the versatility of Stainless High Pressure Reactor - a safe and reliable solution for direct and indirect heating. Built with stainless steel, it can withstand high temperatures and pressures. Learn more now.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Related Articles

WIP – Warm Isostatic Press Equipment: Design, Features, and Benefits

WIP – Warm Isostatic Press Equipment: Design, Features, and Benefits

KinTek specializes in designing and building Warm Isostatic Presses (WIP) for various applications. These systems can be either gas or liquid pressurized and are commonly used for plastics and laminated products. WIPs are custom-built to accommodate different pressure levels, ranging from low pressure to extreme pressures.

Find out more
Exploring the Capabilities and Applications of Warm Isostatic Pressing (WIP)

Exploring the Capabilities and Applications of Warm Isostatic Pressing (WIP)

Dive into the comprehensive guide on Warm Isostatic Pressing (WIP), its technology, applications, and benefits in material processing. Discover how WIP enhances material properties and its role in advanced manufacturing.

Find out more
Warm Isostatic Pressing: An Advanced Manufacturing Technology

Warm Isostatic Pressing: An Advanced Manufacturing Technology

Warm Isostatic Pressing (WIP) is a cutting-edge technology that enables isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium. It is a variant of cold isostatic pressing (CIP) that includes a heating element.

Find out more
Understanding Cold Isostatic Pressing (CIP) and its Applications

Understanding Cold Isostatic Pressing (CIP) and its Applications

Cold Isostatic Pressing (CIP) is a versatile manufacturing process that is widely used in various industries. It involves applying equal pressure from all directions to a material in order to achieve uniform compaction. This process is especially beneficial for materials with complex shapes or delicate structures. CIP is also known as isostatic compaction or hydrostatic pressing.

Find out more
Cold Isostatic Pressing (CIP): A Proven Process for High-Performance Parts Manufacturing

Cold Isostatic Pressing (CIP): A Proven Process for High-Performance Parts Manufacturing

Cold isostatic pressing (CIP) is a proven process that stands out when it comes to high-performance part manufacturing. The technology offers a range of advantages, from achieving superior densities in ceramics to compressing materials as diverse as metals and graphite.

Find out more
Warm Isostatic Pressing An Overview of the Process and Equipment

Warm Isostatic Pressing An Overview of the Process and Equipment

Warm Isostatic Pressing (WIP) is a process used to improve the quality of materials by applying high pressure and temperature. WIP is used to improve the density, mechanical properties, and microstructure of materials.

Find out more
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

Find out more
Understanding Cold Isostatic Pressing (CIP) and Hot Isostatic Pressing (HIP) in Powder Metallurgy

Understanding Cold Isostatic Pressing (CIP) and Hot Isostatic Pressing (HIP) in Powder Metallurgy

Cold Isostatic Pressing (CIP) and Hot Isostatic Pressing (HIP) are two powder metallurgy techniques used to produce dense and high-quality metal components.

Find out more
Hot & Cold Isostatic Pressing: Applications, Process, and Specifications

Hot & Cold Isostatic Pressing: Applications, Process, and Specifications

Hot Isostatic Pressing (HIP) is a manufacturing process that involves the simultaneous application of high temperature and pressure to metals and other materials. The purpose of HIP is to reduce the porosity of metals and increase the density of ceramic materials. This process improves the mechanical properties and workability of the materials.

Find out more
Understanding the Warm Isostatic Pressing Technique

Understanding the Warm Isostatic Pressing Technique

Warm Isostatic Pressing (WIP) is a technique used in the manufacturing industry to form and press powder materials. It involves the use of a flexible material as the envelope die and hydraulic pressure as the medium to shape the material. Unlike traditional pressing methods, WIP utilizes a liquid medium that is heated and injected into a sealed pressing cylinder. This technique is particularly beneficial for materials with special temperature requirements or those that cannot be formed at room temperature.

Find out more
Understanding Cold Isostatic Pressing (CIP) and Its Advantages

Understanding Cold Isostatic Pressing (CIP) and Its Advantages

Cold Isostatic Pressing (CIP) is a unique technique used in the manufacturing industry for compacting and shaping materials. It involves subjecting a material to uniform pressure from all directions, resulting in a highly dense and uniform product. CIP is particularly useful for machining and metal forming tools, as well as for large parts that don't require high precision.

Find out more
Comprehensive Overview of Warm Isostatic Press and Its Applications

Comprehensive Overview of Warm Isostatic Press and Its Applications

Warm isostatic pressing (WIP) is a variant of cold isostatic pressing (CIP) that includes a heating element. It employs warm water or a similar medium to apply uniform pressure to powdered products from all directions. WIP is a cutting-edge technology that enables isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium.

Find out more