Knowledge What is the difference between sputtering and thermal deposition?
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What is the difference between sputtering and thermal deposition?

Sputtering deposition and thermal evaporation are two methods used to deposit thin films on substrates.

Sputtering deposition is a process that uses energized gas molecules to deposit thin films on the substrate. It provides better step coverage and can be used to deposit metals, non-metals, alloys, and oxides. Sputtering offers better film quality and uniformity, potentially leading to a higher yield. It also offers scalability, although at a higher cost and with more complex setups. Sputtering is a good option for thicker metallic or insulation coatings.

Thermal evaporation, on the other hand, relies on heat to evaporate or sublimate a solid source material. There are two forms of thermal evaporation: resistive thermal evaporation and e-beam evaporation. Thermal evaporation is more cost-effective and less complex compared to sputtering. It offers higher deposition rates, allowing for high throughput and high-volume production. For thinner films of metals or nonmetals with lower melting temperatures, resistive thermal evaporation may be a better choice. E-beam evaporation is suitable for improved step coverage or when working with a wide range of materials.

Sputtering and thermal evaporation have some distinct differences. Sputtering does not use evaporation but instead uses energized plasma atoms to shoot at a negatively charged source material. The impact of the energized atoms causes atoms from the source material to break off and adhere to the substrate, resulting in a thin film. Sputtering is performed in a vacuum and provides better coating coverage for complex substrates. It is capable of producing high purity thin films.

Thermal evaporation, on the other hand, relies on the heat to evaporate or sublimate a solid source material. It can be done through resistive thermal evaporation or e-beam evaporation. The energies involved in thermal evaporation processes depend on the temperature of the source material being evaporated. Thermal evaporation tends to deposit thin films more quickly than sputtering.

In summary, sputtering deposition offers better film quality, uniformity, and step coverage, but it is more complex and expensive. Thermal evaporation, on the other hand, is more cost-effective and has higher deposition rates. The choice between the two methods depends on factors such as the thickness of the coating, the type of material, and the desired film quality.

Looking for high-quality thin film deposition solutions? Choose KINTEK, your trusted laboratory equipment supplier. With our wide range of sputtering and thermal deposition systems, we have the perfect solution to meet your specific requirements. Our sputtering deposition systems provide superior film quality, uniformity, and coverage for complex substrates, ensuring a higher yield. For cost-effective and high-volume production, our thermal deposition systems offer higher deposition rates and are less complex. Whether you need sputtering or thermal deposition, KINTEK has you covered. Contact us today to discuss your thin film deposition needs and elevate your research and production to new heights.

Related Products

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Tungsten Titanium Alloy (WTi) Sputtering Target / Powder / Wire / Block / Granule

Discover our Tungsten Titanium Alloy (WTi) materials for laboratory use at affordable prices. Our expertise allows us to produce custom materials of different purities, shapes, and sizes. Choose from a wide range of sputtering targets, powders, and more.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tellurium (Te) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of high-quality Tellurium (Te) materials for laboratory use at affordable prices. Our expert team produces custom sizes and purities to fit your unique needs. Shop sputtering targets, powders, ingots, and more.

High Purity Titanium (Ti) Sputtering Target / Powder / Wire / Block / Granule

High Purity Titanium (Ti) Sputtering Target / Powder / Wire / Block / Granule

Shop for high-quality Titanium (Ti) materials at reasonable prices for laboratory use. Find a wide range of tailored products to suit your unique needs, including sputtering targets, coatings, powders, and more.

High Purity Iridium (Ir) Sputtering Target / Powder / Wire / Block / Granule

High Purity Iridium (Ir) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Iridium (Ir) materials for laboratory use? Look no further! Our expertly produced and tailored materials come in various purities, shapes, and sizes to suit your unique needs. Check out our range of sputtering targets, coatings, powders, and more. Get a quote today!

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Selenium (Se) materials for laboratory use? We specialize in producing and tailoring materials of various purities, shapes, and sizes to suit your unique requirements. Explore our range of sputtering targets, coating materials, powders, and more.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

High Purity Carbon (C) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Carbon (C) materials for your laboratory needs? Look no further! Our expertly produced and tailored materials come in a variety of shapes, sizes, and purities. Choose from sputtering targets, coating materials, powders, and more.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High Purity Platinum (Pt) Sputtering Target / Powder / Wire / Block / Granule

High purity Platinum (Pt) sputtering targets, powders, wires, blocks, and granules at affordable prices. Tailored to your specific needs with diverse sizes and shapes available for various applications.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications


Leave Your Message