Knowledge Why You Should Avoid Water Contamination When Performing FTIR Measurements Using NaCl or KBr Plates? 4 Key Reasons
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

Why You Should Avoid Water Contamination When Performing FTIR Measurements Using NaCl or KBr Plates? 4 Key Reasons

When performing Fourier Transform Infrared (FTIR) measurements, it's crucial to avoid water contamination, especially when using NaCl or KBr plates.

4 Key Reasons Why You Should Avoid Water Contamination in FTIR Measurements

Why You Should Avoid Water Contamination When Performing FTIR Measurements Using NaCl or KBr Plates? 4 Key Reasons

1. Hydroscopic Nature of KBr and NaCl

Both KBr and NaCl are hydroscopic, meaning they readily absorb water from the surrounding environment.

If these materials absorb moisture, it can interfere with the FTIR measurements.

The absorbed water can lead to the appearance of additional peaks in the spectrum that are not representative of the sample itself but are due to the water absorbed by the plates.

This can distort the true spectrum of the sample, leading to misinterpretation of the data.

2. Impact on Sample Transparency

For accurate FTIR measurements, the sample must be transparent to infrared radiation.

Salts like KBr and NaCl are used because they allow IR radiation to pass through, facilitating accurate spectrum readings.

However, if these salts are contaminated with water, their transparency can be compromised.

Water can scatter or absorb the IR radiation, reducing the intensity of the transmitted light and affecting the resolution and sharpness of the spectral peaks.

3. Influence on Sample Preparation and Measurement

In FTIR, samples are often prepared by mixing with KBr or NaCl and then pressed into pellets.

If these salts contain water, it can affect the homogeneity of the pellet and the distribution of the sample within it.

This can lead to inconsistent or inaccurate measurements.

Additionally, for liquid samples, the use of water-contaminated NaCl or KBr plates can lead to dissolution of these salts, altering the sample environment and potentially damaging the sample cells.

4. Prevention Measures

To avoid these issues, it is recommended to prepare and handle KBr and NaCl in environments with controlled humidity, such as a glovebox.

Using vacuum dies can also help, but the best practice is to minimize exposure to moisture from the outset.

Proper cleaning and storage of the plates are also essential to prevent contamination.

Continue Exploring, Consult Our Experts

Upgrade your FTIR analysis with precision and reliability! Discover why KINTEK SOLUTION's high-purity KBr and NaCl materials are the cornerstone of accurate measurements.

Our specialized products are designed to resist moisture absorption, ensuring transparent samples and consistent results.

Experience the difference with KINTEK SOLUTION and take your laboratory to new heights of precision. Shop now to protect your data from contamination!

Related Products

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

PTFE conductive glass substrate cleaning rack

PTFE conductive glass substrate cleaning rack

The PTFE conductive glass substrate cleaning rack is used as the carrier of the square solar cell silicon wafer to ensure efficient and pollution-free handling during the cleaning process.

Laboratory ITO/FTO conductive glass cleaning flower basket

Laboratory ITO/FTO conductive glass cleaning flower basket

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

Flat corrosion electrolytic cell

Flat corrosion electrolytic cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

Explosive Proof Hydrothermal Synthesis Reactor

Explosive Proof Hydrothermal Synthesis Reactor

Enhance your lab reactions with Explosive Proof Hydrothermal Synthesis Reactor. Corrosion-resistant, safe, and reliable. Order now for faster analysis!

evaporation boat for organic matter

evaporation boat for organic matter

The evaporation boat for organic matter is an important tool for precise and uniform heating during the deposition of organic materials.

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

PTFE bottle oil fume sampling tube

PTFE bottle oil fume sampling tube

PTFE products are generally called "non-stick coating", which is a synthetic polymer material that replaces all hydrogen atoms in polyethylene with fluorine.

PTFE sampling filter

PTFE sampling filter

PTFE filter element is a commonly used industrial filter element, mainly used to filter corrosive media such as high-purity chemical substances, strong acids, and strong alkalis.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Coating evaluation electrolytic cell

Coating evaluation electrolytic cell

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.


Leave Your Message