Products Lab Consumables & Materials Electrochemical Consumables Side Window Optical Electrolytic Electrochemical Cell
Side Window Optical Electrolytic Electrochemical Cell

Electrochemical Consumables

Side Window Optical Electrolytic Electrochemical Cell

Item Number : ELCOS

Price varies based on specs and customizations


$199.90 / set


Specifications
50ml ~ 1000ml
Applicable temperature range
0 ~ 60℃
Sealing form
thread
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Get Quote

Why Choose Us

Reliable Partner

Easy ordering process, quality products, and dedicated support for your business success.

Easy Process Quality Assured Dedicated Support

A side window optical electrolytic cell is ideal for electrochemical experiments due to its corrosion resistance and complete specifications. It features good sealing and high-quality material selection, making it both safe and durable. Additionally, this type of cell can be customized to meet specific experimental needs.

Technical specifications

Quartz window electrolytic cell

Specifications 50ml ~ 1000ml
Applicable temperature range 0 ~ 60℃
Sealing form thread
Material glass + PTFE
Opening hole of electrolytic cell Three electrode holes (6mm), two air holes (3mm), custom openings are available

PTFE quartz window electrolytic cell

Specifications 50ml ~ 1000ml
Applicable temperature range 0 ~ 60℃
Sealing form thread
Material PTFE
Opening hole of electrolytic cell Three electrode holes (6mm), two air holes (3mm), custom openings are available

Detail & Parts

Quartz window electrolytic cell
Quartz window electrolytic cell: 1. With thread seal; 2. Quartz window electrolytic cell; 3. PTFE cover; 4. 6.2mm electrode hole*3; 5. 3.1mm air hole*2; 6. Quartz light window; 7. 6.2mm 3 nuts; 8. 3.1mm nuts*2; 9. Fluoro rubber ring for sealing; 10. Fluoro rubber ring for bottle body sealing
PTFE quartz window electrolytic cell
PTFE quartz window electrolytic cell: 1. With thread seal; 2. Electrolytic cell with PTFE quartz window; 3. Quartz window; 4. PTFE cover; 5. 6.2mm electrode hole*3; 6. 3.1mm air hole*2; 7. Quartz 8. 6.2mm nut*3; 9. 3.1mm nut*2; 10. Fluoro rubber ring for sealing; 11. Fluoro rubber ring for bottle body sealing

Side window optical electrolytic cell detail 1Side window optical electrolytic cell detail 2Side window optical electrolytic cell detail 3Side window optical electrolytic cellsSide window optical electrolytic cell detail 5Side window optical electrolytic cell detail 6Side window optical electrolytic cell detail 7Side window optical electrolytic cell detail 8Side window optical electrolytic cell detail 9

Operating steps

Quartz window electrolytic cell

step 1

1. The quartz window electrolytic cell is composed of a quartz light window, a sealing rubber ring, a sealing plug, a polytetrafluoroethylene cover and a cell body

step 2

2. When installing, insert the electrode and gas pipe into the electrolytic cell, and then install the sealing ring

step 3

3. Install the sealing nut of the electrode and the air hole on the electrode, squeeze the sealing ring and tighten the nut

steo 4

4. Install the large sealing ring on the cell body, and completely clamp the sealing ring on the cover to ensure that the sealing ring is tightly locked

step 5

5. Installation is complete

PTFE Quartz window electrolytic cell

step 1

1. The PTFE quartz window electrolytic cell is composed of PTFE light window, sealing rubber ring, sealing plug, PTFE cover and PTFE cell body

step 2

2. When installing, insert the electrode and gas pipe into the electrolytic cell, and then install the sealing ring

step 3

3. Install the sealing nut of the electrode and the air hole on the electrode, squeeze the sealing ring and tighten the nut

step 4

4. Install the large sealing ring on the cell body, and completely clamp the sealing ring on the cover to ensure that the sealing ring is tightly locked

step 5

5. Installation is complete

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Are Optical Windows And What Are They Used For?

Optical windows are transparent components used to transmit light without distorting its properties. They are used in various applications such as high-power IR laser systems, microwave windows, and in environments requiring exceptional broad-band infrared transparency and thermal conductivity.

What Are The Different Types Of Optical Windows Available?

There are several types of optical windows, including diamond optical windows, CaF2 windows, MgF2 windows, silicon windows, quartz glass sheets, zinc sulfide (ZnS) windows, barium fluoride (BaF2) windows, zinc selenide (ZnSe) windows, and sapphire windows. Each type has unique properties suited for different applications.

How Do Optical Windows Work?

Optical windows work by allowing light to pass through them with minimal absorption, reflection, and scattering. They are designed to maintain the integrity of the light's properties, such as wavelength and intensity, ensuring clear and accurate transmission.

What Are The Advantages Of Using Optical Windows In High-power IR Laser Applications?

Optical windows used in high-power IR laser applications offer several advantages, including exceptional broad-band infrared transparency, excellent thermal conductivity, and low scattering in the infrared spectrum. These properties help in maintaining the performance and longevity of the laser systems.

Why Are CaF2 Windows Preferred In Certain Optical Applications?

CaF2 windows are preferred in optical applications due to their versatility, environmental stability, resistance to laser damage, and high, stable transmission from 200 nm to about 7 μm. These properties make them suitable for a wide range of optical applications.

What Makes MgF2 Windows Unique?

MgF2 windows are unique because they are made from a tetragonal crystal that exhibits anisotropy. This property makes them essential for precision imaging and signal transmission, where treating them as single crystals is imperative.

How Does Silicon Perform In Near-infrared (NIR) Applications?

Silicon performs exceptionally well in near-infrared (NIR) applications, covering a range of approximately 1 μm to 6 μm. It is one of the most durable mineral and optical materials, making it highly suitable for NIR applications.

What Are The Benefits Of Using High-temperature Resistant Optical Quartz Glass Sheets?

High-temperature resistant optical quartz glass sheets offer excellent thermal and chemical resistance. They are widely used in industries requiring precise light manipulation, such as telecommunications and astronomy, due to their exceptional clarity and tailored refractive properties.

Why Are Zinc Sulfide (ZnS) Windows Preferred In Harsh Environments?

Zinc sulfide (ZnS) windows are preferred in harsh environments because they have excellent mechanical strength, chemical inertness, and a wide IR transmission range between 8-14 microns. These properties make them highly durable and resistant to harsh conditions.

What Are The Applications Of Barium Fluoride (BaF2) Windows?

BaF2 windows are valuable for applications in VUV and infrared spectroscopy due to their fast scintillation properties. They are sought after for their exceptional properties, making them ideal for precise spectroscopic analysis.
View more faqs for this product

4.8

out of

5

Fantastic product. Delivery was swift and installation was a breeze. The cell is performing admirably in our lab experiments.

Haya Al-Khalaf

4.9

out of

5

This side window optical electrolytic cell is a great investment. It's durable, easy to use, and provides accurate results. Highly recommended!

Fulgencio Perez

4.7

out of

5

The quality of this cell is top-notch. It's well-made and has held up well in our lab. We're very satisfied with our purchase.

Madhumathi Perumal

4.8

out of

5

This electrolytic cell is a great value for the price. It's easy to set up and use, and it's been working perfectly for our experiments.

Oliver Chen

4.9

out of

5

The performance of this cell is beyond expectations. It's precise, reliable, and has become an indispensable tool in our research.

Amina Khan

4.7

out of

5

This cell is a must-have for any lab. It's sturdy, dependable, and delivers consistent results. We're thoroughly impressed.

Sebastian Clark

4.8

out of

5

This side window optical electrolytic cell is a game-changer. It's efficient, user-friendly, and has significantly improved our lab's productivity.

Aylin Costa

4.9

out of

5

The technological advancements in this cell are remarkable. It's a testament to the innovative spirit of KINTEK SOLUTION.

Liam Martin

4.7

out of

5

The durability of this cell is unmatched. It's been through rigorous use in our lab and shows no signs of wear or tear.

Sophia Patel

4.8

out of

5

The versatility of this cell is impressive. It can handle various experiments with ease, making it an invaluable asset to our laboratory.

Gabriel Silva

4.9

out of

5

The customer service provided by KINTEK SOLUTION is exceptional. They were incredibly helpful and responsive to our inquiries.

Isabella Garcia

4.7

out of

5

The delivery of this product was remarkably fast. We received it within days of placing the order, which was crucial for our ongoing research.

Jackson Kim

4.8

out of

5

The packaging of this cell was impeccable. It arrived in perfect condition, ensuring its integrity during transit.

Amelia White

4.9

out of

5

The value for money offered by this cell is unbeatable. It's an affordable yet high-quality piece of equipment that delivers exceptional results.

Lucas Brown

4.7

out of

5

The user manual provided with this cell is comprehensive and easy to understand. It made setup and operation a breeze.

Harper Jones

4.8

out of

5

The compatibility of this cell with various experimental setups is a major advantage. It seamlessly integrates into our existing lab infrastructure.

Isabella Garcia

4.9

out of

5

The accuracy and precision of this cell are commendable. It provides reliable and reproducible results, which is essential for our research.

Jackson Kim

4.7

out of

5

The safety features incorporated into this cell are top-notch. It ensures safe operation and minimizes the risk of accidents in the lab.

Amelia White

4.8

out of

5

The sleek and ergonomic design of this cell makes it a pleasure to use. It's both functional and aesthetically pleasing.

Lucas Brown

Products

Side Window Optical Electrolytic Electrochemical Cell

PDF Format Catalog
Download

Category

Electrochemical Consumables

PDF Format Catalog
Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Thin-Layer Spectral Electrolysis Electrochemical Cell

Thin-Layer Spectral Electrolysis Electrochemical Cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

Double-Layer Water Bath Electrolytic Electrochemical Cell

Double-Layer Water Bath Electrolytic Electrochemical Cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

Double Layer Five-Port Water Bath Electrolytic Electrochemical Cell

Double Layer Five-Port Water Bath Electrolytic Electrochemical Cell

Experience optimal performance with our Water Bath Electrolytic Cell. Our double-layer, five-port design boasts corrosion resistance and longevity. Customizable to fit your specific needs. View specs now.

Glassy Carbon Sheet RVC for Electrochemical Experiments

Glassy Carbon Sheet RVC for Electrochemical Experiments

Discover our Glassy Carbon Sheet - RVC. Perfect for your experiments, this high-quality material will elevate your research to the next level.

Glassy Carbon Electrochemical Electrode

Glassy Carbon Electrochemical Electrode

Upgrade your experiments with our Glassy Carbon Electrode. Safe, durable, and customizable to fit your specific needs. Discover our complete models today.

Zinc Selenide ZnSe Optical Window Glass Substrate Wafer and Lens

Zinc Selenide ZnSe Optical Window Glass Substrate Wafer and Lens

Zinc selenide is formed by synthesizing zinc vapor with H2Se gas, resulting in sheet-like deposits on graphite susceptors.

Related Articles

The Fragile Intersection: Mastering the Side-Window Optical Electrolytic Cell

The Fragile Intersection: Mastering the Side-Window Optical Electrolytic Cell

Spectroelectrochemistry combines chemical, electrical, and optical hazards in a delicate vessel. Here is how to master the safety and precision of this complex system.

Find out more
Escaping the Black Box: The Architecture of Insight in Electrochemistry

Escaping the Black Box: The Architecture of Insight in Electrochemistry

Unlock the correlation between visible phenomena and electrical data. A deep dive into the engineering and application of side-window optical electrolytic cells.

Find out more
The Geometry of Truth: Why the Maintenance of Your Optical Electrolytic Cell Defines Your Data

The Geometry of Truth: Why the Maintenance of Your Optical Electrolytic Cell Defines Your Data

Great data isn't just about the experiment; it's about the vessel. Learn the rigorous maintenance protocols for side-window optical electrolytic cells.

Find out more
Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Explore the detailed workings, applications, and benefits of quartz electrolytic cells in various industries. Learn how these cells facilitate precise chemical reactions and their role in high-purity metal production.

Find out more
The Invisible 90%: Why Spectroelectrochemistry Succeeds Before It Begins

The Invisible 90%: Why Spectroelectrochemistry Succeeds Before It Begins

Experimental success isn't just about the reaction; it's about the vessel. Master the 4-step preparation protocol for optical electrolytic cells to ensure data integrity.

Find out more
Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Electrolytic cells play a crucial role in various industrial processes, including copper purification and electroplating. These cells utilize an external power source to drive chemical reactions, resulting in the decomposition of substances. Through the process of electrolysis, an electric current is passed through a liquid or solution containing ions, causing them to break down.

Find out more
Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Electrolytic cells are devices that utilize an electric current to induce a non-spontaneous chemical reaction.

Find out more
The Silent Dialogue: Mastering Control in Electrolytic Cells

The Silent Dialogue: Mastering Control in Electrolytic Cells

Electrolysis is a non-spontaneous act requiring precise control. Learn to interpret the interplay of voltage, current, and physical phenomena for safer lab results.

Find out more
The Glass Heart of the Experiment: Mastering the Electrolytic Cell

The Glass Heart of the Experiment: Mastering the Electrolytic Cell

Master the art of handling electrolytic cells. Learn the critical balance between physical fragility, chemical safety, and operational precision.

Find out more
The Architecture of Precision: Why Your Electrolytic Cell Specs Matter More Than You Think

The Architecture of Precision: Why Your Electrolytic Cell Specs Matter More Than You Think

Discover the critical logic behind electrolytic cell specifications. From aperture geometry to volume trade-offs, learn how the right vessel defines experimental success.

Find out more
Understanding Electrodes and Electrochemical Cells

Understanding Electrodes and Electrochemical Cells

An electrode is a point where current enters and leaves the electrolyte. It is a conductor used to make a junction with a nonmetallic part of a circuit. Electrodes can be made of materials such as gold, platinum, carbon, graphite, or metal. They serve as the surface for oxidation-reduction reactions in electrochemical cells. There are different types of electrodes, including anode and cathode.

Find out more
Applications of H-Type Electrolytic Cell in Metal Extraction

Applications of H-Type Electrolytic Cell in Metal Extraction

H-type electrolytic cells uses an electrolyte solution to dissolve the metal ions and an electric current to separate the metal ions from the solution.

Find out more