Knowledge How Plasma is Generated in Magnetron Sputtering: A 6-Step Guide for Non-Professionals
Author avatar

Tech Team · Kintek Solution

Updated 3 weeks ago

How Plasma is Generated in Magnetron Sputtering: A 6-Step Guide for Non-Professionals

Magnetron sputtering is a process used to create thin films by ejecting atoms from a target material. This process involves generating plasma, which is a state of matter where a gas becomes electrically charged. Here’s a simplified breakdown of how plasma is generated in magnetron sputtering.

6 Steps to Plasma Generation in Magnetron Sputtering

How Plasma is Generated in Magnetron Sputtering: A 6-Step Guide for Non-Professionals

1. Setting Up the Vacuum Chamber and Introducing Gas

The process starts by creating a high vacuum inside a vacuum chamber. This helps to avoid contaminants and reduces the pressure of background gases. Once the base pressure is achieved, a sputtering gas, usually argon, is introduced into the chamber. The pressure is kept in the range of milli Torr using a pressure control system.

2. Initiating Plasma Generation

A high voltage is applied between the cathode (target material) and the anode. This voltage initiates the plasma generation. The voltage needed depends on the gas used and its pressure. For argon, the ionization potential is about 15.8 electron volts (eV).

3. Enhancing Plasma Efficiency with a Magnetic Field

In magnetron sputtering, a closed magnetic field is added over the target surface. This magnetic field increases the efficiency of plasma generation by enhancing collisions between electrons and argon atoms near the target surface. The electrons in the plasma spiral around the target due to the magnetic field, produced by magnets placed behind the target. These spiraling electrons collide with nearby atoms, ionizing them and boosting plasma production and density.

4. Ion Bombardment and Sputtering

The generated plasma causes ionized gas atoms (ions) to collide with the target surface. These collisions dislodge atoms from the target surface, a process called sputtering. The ejected atoms then deposit onto the substrate, forming a thin film.

5. Variations in Magnetron Sputtering

The conventional magnetron sputtering method concentrates the plasma above the target, which can lead to high ion bombardment and potential damage to the film on the substrate. To mitigate this, the unbalanced magnetron sputtering method is used. Here, the magnetic field is arranged to spread the plasma, reducing ion concentration near the substrate and improving film quality.

6. Types of Magnetrons

Magnetrons used in sputtering systems can be either DC (direct current) or RF (radio frequency). The choice depends on the desired deposition rate, film quality, and material compatibility. DC magnetrons use a direct current power supply, while RF magnetrons use a high-frequency radio frequency power supply.

Continue Exploring, Consult Our Experts

Unlock the Power of Plasma with KINTEK!

Are you ready to elevate your thin film deposition to the next level? KINTEK's advanced magnetron sputtering systems harness the precision of plasma technology to deliver unparalleled control and efficiency in your material research and industrial processes. Our cutting-edge equipment, designed with both DC and RF magnetrons, ensures optimal plasma generation for high-quality film deposition across a wide range of applications. Don’t settle for less when you can achieve the best. Contact KINTEK today and discover how our expertise in plasma technology can transform your projects. Let’s innovate together!

Related Products

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Slide PECVD tube furnace with liquid gasifier PECVD machine

Slide PECVD tube furnace with liquid gasifier PECVD machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Magnesium (Mn) materials for your lab needs? Our custom sizes, shapes, and purities have got you covered. Explore our diverse selection today!

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

High Purity Gadolinium (Gd) Sputtering Target / Powder / Wire / Block / Granule

High Purity Gadolinium (Gd) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Gadolinium (Gd) materials for laboratory use at affordable prices. Our experts tailor materials to fit your unique needs with a range of sizes and shapes available. Shop sputtering targets, coating materials, and more today.

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide materials at reasonable prices for your lab needs. We customize BC materials of different purities, shapes, and sizes, including sputtering targets, coatings, powders, and more.

High Purity Lead (Pb) Sputtering Target / Powder / Wire / Block / Granule

High Purity Lead (Pb) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Lead (Pb) materials for your laboratory needs? Look no further than our specialized selection of customizable options, including sputtering targets, coating materials, and more. Contact us today for competitive pricing!

High Purity Zinc (Zn) Sputtering Target / Powder / Wire / Block / Granule

High Purity Zinc (Zn) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Zinc (Zn) materials for laboratory use at affordable prices. Our experts produce and customize materials of different purities, shapes, and sizes to suit your needs. Browse our range of sputtering targets, coating materials, and more.


Leave Your Message