Knowledge What are thermal evaporation sources? 5 Key Methods Explained
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

What are thermal evaporation sources? 5 Key Methods Explained

Thermal evaporation is a technique used to deposit thin films of materials.

It involves heating a material to its evaporation point in a high-vacuum environment.

This causes the material to transition from a solid or liquid state into a vapor state.

The vaporized molecules then travel to a substrate where they form a thin film coating.

This process is commonly used for materials like aluminum, silver, nickel, chrome, magnesium, and others.

What are thermal evaporation sources? 5 Key Methods Explained

What are thermal evaporation sources? 5 Key Methods Explained

1. Filament Evaporation

Filament evaporation uses a simple electrical heating element or filament.

The material is heated through joule heating, which is the process of heating a resistive material by passing an electric current through it.

This method is also known as resistive evaporation.

2. Electron Beam or E-Beam Evaporation

In this method, an electron beam is aimed at the source material to heat it directly.

The high energy of the electron beam causes the material to evaporate and enter the gas phase.

This method allows for precise control over the heating process and can be used with materials that are difficult to evaporate using filament heating.

3. Thermal Molecular Agitation

Thermal evaporation is based on the principle of thermal molecular agitation.

Applying heat to a material increases the energy of its molecules.

When the energy exceeds the thermodynamic potential, molecules escape from the surface as vapor.

This principle is similar to natural processes like water evaporation but is applied in a controlled, high-vacuum environment to deposit thin films of materials.

4. Equilibrium Vapor Pressure (EVP)

The equilibrium vapor pressure (EVP) at which materials begin to evaporate in a vacuum is around 10-2 Torr.

Some materials, like titanium, can sublime or evaporate at temperatures near their melting points, making them suitable for thermal evaporation processes.

5. Applications and Advantages

Thermal evaporation offers several advantages, including relatively high deposition rates, real-time rate and thickness control, and good evaporant stream directional control.

This makes it suitable for processes such as lift-off to achieve direct patterned coatings.

The technique is versatile and simple, with applications ranging from electronics to coatings in various industries.

Continue exploring, consult our experts

Discover the precision and versatility of thermal evaporation technology with KINTEK SOLUTION.

Whether you're aiming for complex patterned coatings or precise thin-film applications, our advanced equipment and materials will take your project to new heights.

Explore our filament evaporation systems and electron beam evaporators designed to maximize your deposition rates and control the thickness and quality of your coatings.

Elevate your research and manufacturing processes – trust KINTEK SOLUTION for all your thermal evaporation needs!

Related Products

Molybdenum / Tungsten / Tantalum Evaporation Boat

Molybdenum / Tungsten / Tantalum Evaporation Boat

Evaporation boat sources are used in thermal evaporation systems and are suitable for depositing various metals, alloys and materials. Evaporation boat sources are available in different thicknesses of tungsten, tantalum and molybdenum to ensure compatibility with a variety of power sources. As a container, it is used for vacuum evaporation of materials. They can be used for thin film deposition of various materials, or designed to be compatible with techniques such as electron beam fabrication.

Molybdenum/tungsten/tantalum evaporation boat - special shape

Molybdenum/tungsten/tantalum evaporation boat - special shape

Tungsten Evaporation Boat is ideal for vacuum coating industry and sintering furnace or vacuum annealing. we offers tungsten evaporation boats that are designed to be durable and robust, with long operating lifetimes and to ensure consistent smooth and even spreading of the molten metals.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

evaporation boat for organic matter

evaporation boat for organic matter

The evaporation boat for organic matter is an important tool for precise and uniform heating during the deposition of organic materials.

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Looking for a reliable and efficient rotary evaporator? Our 0.5-1L rotary evaporator uses constant temperature heating and thin film evaporating to implement a range of operations, including solvent removal and separation. With high-grade materials and safety features, it's perfect for labs in pharmaceutical, chemical, and biological industries.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.


Leave Your Message