Knowledge What is the Difference Between a Voltaic Cell and an Electrolytic Cell? 5 Key Points Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is the Difference Between a Voltaic Cell and an Electrolytic Cell? 5 Key Points Explained

Voltaic cells, also known as galvanic cells, and electrolytic cells are both types of electrochemical cells. However, they operate on different principles and serve different purposes.

Voltaic cells generate electrical energy from spontaneous chemical reactions.

Electrolytic cells use electrical energy to drive non-spontaneous chemical reactions.

Understanding these differences is crucial for anyone involved in purchasing lab equipment or consumables. It impacts the selection of appropriate devices for specific applications.

5 Key Points Explained: What Sets Voltaic and Electrolytic Cells Apart

What is the Difference Between a Voltaic Cell and an Electrolytic Cell? 5 Key Points Explained

1. Nature of Chemical Reactions

Voltaic Cells (Galvanic Cells):

  • Spontaneous Reactions: The chemical reactions in voltaic cells occur spontaneously, converting chemical energy into electrical energy. This is the principle behind the operation of batteries.

  • Positive Cell Potential: The cell potential (voltage) of a voltaic cell is always positive, indicating that the reaction is energetically favorable.

Electrolytic Cells:

  • Non-Spontaneous Reactions: Electrolytic cells use external electrical energy to drive non-spontaneous chemical reactions. This process is often used in electrolysis, such as the decomposition of water into hydrogen and oxygen.

  • Requires External Power: Electrolytic cells need a direct current (DC) power supply to function, unlike voltaic cells which generate their own electrical energy.

2. Electrode Functions and Charges

Voltaic Cells:

  • Anode (Oxidation): In voltaic cells, the anode is the electrode where oxidation occurs, releasing electrons into the external circuit.

  • Cathode (Reduction): The cathode is where reduction occurs, attracting electrons from the external circuit.

Electrolytic Cells:

  • Anode (Oxidation): Similar to voltaic cells, the anode in electrolytic cells is where oxidation occurs. However, in this case, the anode is typically connected to the positive terminal of the power supply.

  • Cathode (Reduction): The cathode in electrolytic cells is where reduction occurs, but it is connected to the negative terminal of the power supply.

3. Applications and Uses

Voltaic Cells:

  • Battery Operation: Voltaic cells are used in batteries, providing a portable and self-contained source of electrical energy. Examples include alkaline batteries and rechargeable lithium-ion batteries.

  • Long-Term Energy Storage: Due to their ability to convert chemical energy into electrical energy spontaneously, voltaic cells are ideal for long-term energy storage solutions.

Electrolytic Cells:

  • Electroplating and Metal Purification: Electrolytic cells are used in processes such as electroplating, where a thin layer of metal is deposited on another material, and in the purification of metals like copper.

  • Chemical Decomposition: Electrolytic cells are crucial in industrial processes that involve the decomposition of compounds, such as the production of hydrogen and oxygen from water.

4. Electrical Energy Production vs. Consumption

Voltaic Cells:

  • Energy Production: Voltaic cells produce electrical energy as a result of spontaneous chemical reactions. This makes them suitable for applications where a continuous supply of electrical energy is required, such as in portable electronic devices.

Electrolytic Cells:

  • Energy Consumption: Electrolytic cells consume electrical energy to drive non-spontaneous reactions. This characteristic makes them suitable for applications that require the manipulation of chemical compounds, such as in the synthesis of new materials.

5. Cell Potential and Reaction Direction

Voltaic Cells:

  • Positive Cell Potential: The cell potential in voltaic cells is always positive, indicating a spontaneous reaction. This positive potential drives the flow of electrons from the anode to the cathode through the external circuit.

Electrolytic Cells:

  • Negative Gibbs Free Energy: The reactions in electrolytic cells have a negative Gibbs free energy, indicating that they are non-spontaneous and require an external energy source to proceed. The direction of electron flow in electrolytic cells is from the cathode to the anode through the external circuit.

In summary, the key differences between voltaic cells and electrolytic cells lie in the nature of their chemical reactions, the functions of their electrodes, their applications, and their role in energy production versus consumption. Understanding these differences is essential for selecting the appropriate electrochemical cell for specific laboratory or industrial applications.

Continue Exploring, Consult Our Experts

Discover how Voltaic and Electrolytic cells power diverse applications, from portable electronics to metal purification. With KINTEK SOLUTION's extensive range of lab equipment and consumables, you can optimize your research and production processes. Don't miss out on the perfect solutions for your needs—contact us today to learn more about how we can elevate your scientific endeavors!

Related Products

H type electrolytic cell - H type / triple

H type electrolytic cell - H type / triple

Experience versatile electrochemical performance with our H-type Electrolytic Cell. Choose from membrane or non-membrane sealing, 2-3 hybrid configurations. Learn more now.

Flat corrosion electrolytic cell

Flat corrosion electrolytic cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

Quartz electrolytic cell

Quartz electrolytic cell

Looking for a reliable quartz electrochemical cell? Our product boasts excellent corrosion resistance and complete specifications. With high-quality materials and good sealing, it's both safe and durable. Customize to meet your needs.

Coating evaluation electrolytic cell

Coating evaluation electrolytic cell

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Side window optical electrolytic cell

Side window optical electrolytic cell

Experience reliable and efficient electrochemical experiments with a side window optical electrolytic cell. Boasting corrosion resistance and complete specifications, this cell is customizable and built to last.

Hydrogen fuel cell stack

Hydrogen fuel cell stack

A fuel cell stack is a modular, highly efficient way to generate electricity using hydrogen and oxygen through an electrochemical process. It can be used in various stationary and mobile applications as a clean and renewable energy source.

electrolytic cell with five-port

electrolytic cell with five-port

Streamline your laboratory consumables with Kintek's Electrolytic Cell with five-port design. Choose from sealed and non-sealed options with customizable electrodes. Order now.

Multifunctional electrolytic cell water bath single layer / double layer

Multifunctional electrolytic cell water bath single layer / double layer

Discover our high-quality Multifunctional Electrolytic Cell Water Baths. Choose from single or double-layer options with superior corrosion resistance. Available in 30ml to 1000ml sizes.

Double-layer water bath electrolytic cell

Double-layer water bath electrolytic cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

Thin-layer spectral electrolysis cell

Thin-layer spectral electrolysis cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

Platinum Auxiliary Electrode

Platinum Auxiliary Electrode

Optimize your electrochemical experiments with our Platinum Auxiliary Electrode. Our high-quality, customizable models are safe and durable. Upgrade today!

Electrochemical workstation/potentiostat

Electrochemical workstation/potentiostat

Electrochemical workstations, also known as laboratory electrochemical analyzers, are sophisticated instruments designed for precise monitoring and control in various scientific and industrial processes.

Platinum sheet electrode

Platinum sheet electrode

Elevate your experiments with our Platinum Sheet Electrode. Crafted with quality materials, our safe and durable models can be tailored to fit your needs.

Electrode Fixture

Electrode Fixture

Upgrade your experiments with our customizable Electrode Fixtures. High-quality materials, acid and alkali resistant, and safe and durable. Discover our complete models today.


Leave Your Message