Products Lab Consumables & Materials Electrochemical Consumables Multifunctional electrolytic cell water bath single layer / double layer
Multifunctional electrolytic cell water bath single layer / double layer

Electrochemical Consumables

Multifunctional electrolytic cell water bath single layer / double layer

Item Number : ELCM

Price varies based on specs and customizations


$159.00 / set


Specification
30ml ~ 1000ml
Applicable temperature range
0 ~ 60℃
Material
Glass + PTFE
Working conductive sheet material
Copper / Titanium
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Discover our selection of multifunctional 30ml ~1000ml electrolytic cell water baths, available in both single and double-layer options and designed with superior corrosion resistance.

Technical specifications

Specification 30ml ~ 1000ml
Applicable temperature range 0 ~ 60℃
Material Glass + PTFE
Working conductive sheet material Copper / Titanium

Detail & Parts

Multifunctional electrolytic cell water bath detail 1Multifunctional electrolytic cell water bath detail 2Multifunctional electrolytic cell water bath detail 3

Sealed electrolytic cell and non-sealed electrolytic cell supporting three-electrode system
Sealed electrolytic cell and non-sealed electrolytic cell supporting three-electrode system

silver chloride electrode

Sealed electrolytic cell three-electrode system (silver chloride electrode/platinum disk electrode)
Sealed electrolytic cell three-electrode system (silver chloride electrode/platinum disk electrode)

Operating steps

Our sealed electrolytic cell features a rubber sealing ring, plug, PTFE cover, and bottom body

1. Our sealed electrolytic cell features a rubber sealing ring, plug, PTFE cover, and bottom body.

For installation, simply insert the electrode and gas pipe, then add the sealing ring.

2. For installation, simply insert the electrode and gas pipe, then add the sealing ring.

Complete the setup by adding all sealing rings and fixing the electrode in place.

3. Complete the setup by adding all sealing rings and fixing the electrode in place.

The three-electrode system electrolytic cell is installed

4. The three-electrode system electrolytic cell is installed

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What are electrolytic cells used for?

Electrolytic cells are used for the decomposition of chemical compounds through electrolysis. This process involves the use of an external electric current to facilitate a non-spontaneous redox reaction. Electrolytic cells are commonly used to produce oxygen and hydrogen gas from water, extract aluminum from bauxite, and electroplate various metals. Additionally, electrolytic cells are used in the electrorefining and electrowinning of non-ferrous metals such as aluminum, copper, zinc, and lead. Overall, electrolytic cells have numerous industrial applications in the production and refinement of various chemical compounds and metals.

What is the H type of electrochemical cell?

The H-type electrochemical cell is a replaceable membrane sealed cell that consists of two electrochemical cells coupled together. It features a gas inlet and outlet for easy degassing and multiple electrode feedthroughs for working, counter, and reference electrodes.

What is the function of auxiliary electrode?

The auxiliary electrode, also known as the counter electrode, is an electrode used in a three-electrode electrochemical cell for voltammetric analysis or other reactions where an electric current is expected to flow. Its primary function is to provide a pathway for current flow in the electrochemical cell without passing a significant current through the reference electrode. It provides a means of applying input potential to the working electrode. The auxiliary electrode may be isolated from the working electrode to prevent any byproducts generated from contaminating the main test solution. It is often fabricated from electrochemically inert materials such as gold, platinum, or carbon.

What is an electrode in electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What is the difference between galvanic cell and electrolytic cell?

The main difference between a galvanic cell and an electrolytic cell is that a galvanic cell generates electrical energy from a spontaneous redox reaction, while an electrolytic cell uses electrical energy to drive a non-spontaneous redox reaction. Another difference is that a galvanic cell has a positive cell potential, while an electrolytic cell has a negative cell potential. Galvanic cells are used in batteries, while electrolytic cells are used in processes such as electroplating and purification of metals.

What is H-cell used for?

The H-Cell is a two-compartment electrochemical cell used for membrane testing, H2 permeation, or any other experiment where two separate electrode chambers are required. Both compartments can be separated by an ion-exchange membrane.

What is the difference between auxiliary and reference electrode?

The main difference between auxiliary and reference electrode lies in their function in an electrochemical cell. The auxiliary electrode, also known as the counter electrode, is used to facilitate charge transfer to and from the analyte and pass all the current so that the current at the working electrode can be controlled. On the other hand, the reference electrode is used to reference when measuring and controlling the potential of the working electrode and does not pass any current. The reference electrode has a fixed potential, while the potential of the auxiliary electrode can change.

What are the 3 electrodes in electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

What is an electrolytic cell and how does it work?

An electrolytic cell is an electrochemical cell that uses electrical energy to drive a non-spontaneous redox reaction. It consists of an electrolyte and two electrodes (a cathode and an anode). When an external voltage is supplied to the electrodes, the ions in the electrolyte are attracted to an electrode with the opposite charge, allowing charge-transferring (also known as faradaic or redox) events to occur. The negative electrode is called the cathode and the positive electrode is called the anode. Oxidation occurs at the anode, and reduction occurs at the cathode.

What is the H type microbial fuel cell?

The Microbial H-Cell is a Microbial Fuel Cell (MFC) reactor chamber. The H-cell is defined according to the shape of the cell. It can be used as reactor and other electrochemical cells. The assembled H-cell has a volume of 100ml on each side of chamber.

What materials are commonly used for auxiliary electrodes?

The choice of materials for auxiliary electrodes depends on the specific electrochemical system and the desired reaction. Common materials for auxiliary electrodes include platinum, graphite, stainless steel, and certain metal alloys. These materials are typically inert and do not participate in the desired electrochemical reaction, ensuring that the auxiliary electrode's role remains solely as a conductor for current flow.

What are the different types of electrochemical electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What are the two points of difference between electrochemical and electrolytic cells?

Electrochemical and electrolytic cells both rely on the movement of electrons through the system. However, spontaneous chemical reactions occur in electrochemical cells, whereas nonspontaneous chemical reactions occur in electrolytic cells.

How many types of electrolytic cells are there?

There are two main types of electrolysis cells: The first type is called a "membrane cell" or "diaphragm cell". In this type of cell, a porous membrane or diaphragm is placed between the anode and cathode to prevent the reactions at each electrode from mixing.

How do auxiliary electrodes affect the performance of an electrochemical cell?

Auxiliary electrodes play a crucial role in the performance of electrochemical cells. They help maintain a balanced electrical potential, minimizing side reactions or unwanted reactions at the working electrode. The choice of appropriate materials for the auxiliary electrode is essential to prevent contamination or interference with the desired electrochemical process. Additionally, the design and positioning of the auxiliary electrode within the cell can impact overall efficiency and uniformity of current distribution. Proper selection and placement of auxiliary electrodes can enhance the performance, accuracy, and reproducibility of electrochemical measurements or processes.

What materials are commonly used for electrochemical electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

What is the example of electrolytic cell?

Important examples of electrolysis are the decomposition of water into hydrogen and oxygen, and bauxite into aluminum and other chemicals. Electroplating (e.g., of copper, silver, nickel, or chromium) is done using an electrolytic cell.

What is the H Cell for hydrogen permeation experiments?

The Devanathan-Stachurski cell (or «H cell») is successfully used to evaluate the permeation of hydrogen through sheets or membranes. An H cell consists of two electrochemical compartments separated by a sheet which acts as a working electrode (WE) in both cells.

Why are auxiliary electrodes necessary in electrochemical systems?

Auxiliary electrodes are necessary in electrochemical systems to maintain electrical neutrality and ensure the flow of current. In many electrochemical reactions, the desired reaction occurs at the working electrode, while the auxiliary electrode acts as a counterbalance. It helps to complete the circuit by providing a path for the flow of electrons or ions, thereby allowing the continuous movement of charge and ensuring the overall electrochemical reaction proceeds smoothly and efficiently.

What factors should be considered when selecting an electrochemical electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

Are electrolytic cells spontaneous?

Galvanic cells derives its energy from spontaneous redox reactions, while electrolytic cells involve non-spontaneous reactions and thus require an external electron source like a DC battery or an AC power source.

Are there any limitations or considerations when using auxiliary electrodes?

When using auxiliary electrodes, several limitations and considerations should be taken into account. The choice of materials for the auxiliary electrode is critical to prevent any unwanted reactions or contamination that could affect the desired electrochemical process. Compatibility between the auxiliary electrode and the electrolyte or reactants should be considered to ensure stability and long-term performance. Additionally, the design and positioning of the auxiliary electrode should be carefully optimized to minimize current distribution issues or potential interference with the working electrode. It is also essential to regularly monitor and maintain the auxiliary electrode to prevent degradation or contamination that could impact its performance. Finally, the size and shape of the auxiliary electrode should be considered to ensure compatibility with the specific electrochemical cell or system being used.

How can electrochemical electrodes be used in various applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.
View more faqs for this product

4.9

out of

5

I was impressed by the quick and efficient delivery of the product. It arrived well-packaged and in perfect condition, ready to be put to use.

Zsofia Palfi

4.7

out of

5

The electrolytic cell water bath is an excellent value for money. It's a well-made and durable piece of equipment that has exceeded my expectations.

Cesar Augusto

4.8

out of

5

The quality of the electrolytic cell water bath is top-notch. It's made from high-quality materials and is built to last. I'm confident that it will serve me well for many years to come.

Muhammad Waseem

4.6

out of

5

The electrolytic cell water bath is a durable piece of equipment. It's well-constructed and can withstand the rigors of daily use in my laboratory.

Salma Khatun

4.9

out of

5

I'm impressed by the technological advancement of the electrolytic cell water bath. It's a cutting-edge piece of equipment that allows me to conduct my experiments with greater precision and accuracy.

Nguyen Thi Thu

4.7

out of

5

The electrolytic cell water bath is easy to use. It's well-designed and comes with clear instructions, making it easy to set up and operate.

Pedro Silva

4.8

out of

5

I'm satisfied with the customer service provided by KINTEK SOLUTION. They were responsive to my inquiries and provided helpful support throughout the entire process.

Maria Garcia

4.6

out of

5

The electrolytic cell water bath is a versatile piece of equipment. It can be used for a wide range of experiments, making it a valuable addition to my laboratory.

Ahmed Ali

4.9

out of

5

I'm impressed by the safety features of the electrolytic cell water bath. It has built-in safeguards to protect users from potential hazards, ensuring a safe and secure working environment.

Kimiko Sato

4.7

out of

5

The electrolytic cell water bath is energy-efficient. It consumes less power than other similar products, making it a cost-effective choice for my laboratory.

João Pereira

4.8

out of

5

I'm happy with the overall performance of the electrolytic cell water bath. It meets all my expectations and has proven to be a valuable asset in my research work.

Aisha Khan

4.6

out of

5

The electrolytic cell water bath is a reliable piece of equipment. It operates smoothly and consistently, providing accurate and reproducible results.

Nguyen Van Nam

4.9

out of

5

I'm pleased with the technical support provided by KINTEK SOLUTION. They are knowledgeable and responsive, ensuring that I can get the most out of the electrolytic cell water bath.

Elena Petrova

4.7

out of

5

The electrolytic cell water bath is a well-maintained piece of equipment. It's regularly inspected and calibrated, ensuring its accuracy and reliability.

Hasan Raza

4.8

out of

5

I highly recommend the electrolytic cell water bath from KINTEK SOLUTION. It's a top-quality product that has exceeded my expectations in every way.

Fatima Zahra

PDF - Multifunctional electrolytic cell water bath single layer / double layer

Download

Catalog of Electrochemical Consumables

Download

Catalog of Electrolytic Cell

Download

Catalog of H Type Electrolytic Cell

Download

Catalog of Auxiliary Electrode

Download

Catalog of Electrochemical Electrode

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Double-layer water bath electrolytic cell

Double-layer water bath electrolytic cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

Water bath electrolytic cell - double layer five-port

Water bath electrolytic cell - double layer five-port

Experience optimal performance with our Water Bath Electrolytic Cell. Our double-layer, five-port design boasts corrosion resistance and longevity. Customizable to fit your specific needs. View specs now.

water bath electrolytic cell - H-type double-layer optical

water bath electrolytic cell - H-type double-layer optical

Double-layer H-type optical water bath electrolytic cells, with excellent corrosion resistance and a wide range of specifications available. Customization options are also available.

Flat corrosion electrolytic cell

Flat corrosion electrolytic cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

PTFE adjustable height flower basket/developing and etching conductive glass cleaning rack

PTFE adjustable height flower basket/developing and etching conductive glass cleaning rack

The flower basket is made of PTFE, which is a chemically inert material. This makes it resistant to most acids and bases, and it can be used in a wide variety of applications.

H type electrolytic cell - H type / triple

H type electrolytic cell - H type / triple

Experience versatile electrochemical performance with our H-type Electrolytic Cell. Choose from membrane or non-membrane sealing, 2-3 hybrid configurations. Learn more now.

Optical water bath electrolytic cell

Optical water bath electrolytic cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

PTFE insulator connector filter high voltage PTFE

PTFE insulator connector filter high voltage PTFE

PTFE insulator PTFE has excellent electrical insulation properties in a wide temperature and frequency range.

PTFE conductive glass substrate cleaning rack

PTFE conductive glass substrate cleaning rack

The PTFE conductive glass substrate cleaning rack is used as the carrier of the square solar cell silicon wafer to ensure efficient and pollution-free handling during the cleaning process.

Thin-layer spectral electrolysis cell

Thin-layer spectral electrolysis cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

PTFE tweezers

PTFE tweezers

PTFE tweezers inherit the excellent physical and chemical properties of PTFE, such as high temperature resistance, cold resistance, acid and alkali resistance, and corrosion resistance to most organic solvents.

Coating evaluation electrolytic cell

Coating evaluation electrolytic cell

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Laboratory ITO/FTO conductive glass cleaning flower basket

Laboratory ITO/FTO conductive glass cleaning flower basket

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

Super sealed electrolytic cell

Super sealed electrolytic cell

Super-sealed electrolytic cell offers enhanced sealing capabilities, making it ideal for experiments that require high airtightness.

electrolytic cell with five-port

electrolytic cell with five-port

Streamline your laboratory consumables with Kintek's Electrolytic Cell with five-port design. Choose from sealed and non-sealed options with customizable electrodes. Order now.

High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

Elevate your experiments with our high-purity sheet metal. Gold, platinum, copper, iron, and more. Perfect for electrochemistry and other fields.

PTFE electrolytic cell corrosion-resistant sealed / non-sealed

PTFE electrolytic cell corrosion-resistant sealed / non-sealed

Choose our PTFE Electrolytic Cell for reliable, corrosion-resistant performance. Customize specifications with optional sealing. Explore now.

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

PTFE gasket

PTFE gasket

Gaskets are materials placed between two flat surfaces to enhance the seal. To prevent fluid leakage, sealing elements are arranged between static sealing surfaces.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

Quartz electrolytic cell

Quartz electrolytic cell

Looking for a reliable quartz electrochemical cell? Our product boasts excellent corrosion resistance and complete specifications. With high-quality materials and good sealing, it's both safe and durable. Customize to meet your needs.

PTFE container

PTFE container

PTFE container is a container with excellent corrosion resistance and chemical inertness.

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

Side window optical electrolytic cell

Side window optical electrolytic cell

Experience reliable and efficient electrochemical experiments with a side window optical electrolytic cell. Boasting corrosion resistance and complete specifications, this cell is customizable and built to last.

Related Articles

Exploring the Multifunctional Electrolytic Cell Water Bath: Applications and Benefits

Exploring the Multifunctional Electrolytic Cell Water Bath: Applications and Benefits

Discover the versatile applications of multifunctional electrolytic cell water baths in various industries. Learn about their benefits, components, and how they facilitate chemical reactions and temperature control.

Find out more
Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Explore the detailed workings, applications, and benefits of quartz electrolytic cells in various industries. Learn how these cells facilitate precise chemical reactions and their role in high-purity metal production.

Find out more
Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Electrolytic cells play a crucial role in various industrial processes, including copper purification and electroplating. These cells utilize an external power source to drive chemical reactions, resulting in the decomposition of substances. Through the process of electrolysis, an electric current is passed through a liquid or solution containing ions, causing them to break down.

Find out more
Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Electrolytic cells are devices that utilize an electric current to induce a non-spontaneous chemical reaction.

Find out more
Applications of Electrolytic Cells in Purification and Electroplating

Applications of Electrolytic Cells in Purification and Electroplating

Electrolytic cells are chemical cells that use electricity to generate a non-spontaneous redox reaction. These cells are used in various electrochemical processes such as electrolysis and electroplating.

Find out more
Understanding Flat Corrosion Electrolytic Cells: Applications, Mechanisms, and Prevention Techniques

Understanding Flat Corrosion Electrolytic Cells: Applications, Mechanisms, and Prevention Techniques

Explore the detailed workings of flat corrosion electrolytic cells, their role in industrial processes, and effective strategies to mitigate corrosion. Learn about electrolytic cells, their components, and applications in electroplating and metal purification.

Find out more
Advanced Techniques in Coating Evaluation Using Electrolytic Cells

Advanced Techniques in Coating Evaluation Using Electrolytic Cells

Explore the comprehensive guide on coating evaluation using electrolytic cells, covering electroplating, sol-gel methods, and wet chemical techniques. Enhance your understanding of metal coating properties and applications.

Find out more
Applications of H-Type Electrolytic Cell in Metal Extraction

Applications of H-Type Electrolytic Cell in Metal Extraction

H-type electrolytic cells uses an electrolyte solution to dissolve the metal ions and an electric current to separate the metal ions from the solution.

Find out more
Understanding Electrodes and Electrochemical Cells

Understanding Electrodes and Electrochemical Cells

An electrode is a point where current enters and leaves the electrolyte. It is a conductor used to make a junction with a nonmetallic part of a circuit. Electrodes can be made of materials such as gold, platinum, carbon, graphite, or metal. They serve as the surface for oxidation-reduction reactions in electrochemical cells. There are different types of electrodes, including anode and cathode.

Find out more
Electrolytes and Electrochemical Electrodes

Electrolytes and Electrochemical Electrodes

Electrolytes and electrodes play an essential role in electrochemistry. Electrolytes are substances that conduct electricity when dissolved in water or melted.

Find out more
Innovations in Electrochemical Electrodes Technology

Innovations in Electrochemical Electrodes Technology

Recent advancements in nanotechnology and materials science have led to significant improvements in electrochemical devices, making them more efficient, durable, and cost-effective.

Find out more
How to Choose the Right Electrochemical Electrode

How to Choose the Right Electrochemical Electrode

The choice of electrode material can have a significant impact on the performance of the electrochemical system.

Find out more