Thematics Electrochemical Electrode

electrochemical electrode

An electrochemical electrode is a device that conducts an electrochemical reaction and measures its electrical potential. It consists of a conductive material that is immersed in a solution containing the analyte. The electrochemical reaction produces an electrical signal that can be measured by a voltmeter. Electrochemical electrodes are widely used in analytical chemistry, biochemistry, and materials science. They are classified into several types depending on their mode of operation, such as potentiometric, amperometric, and voltammetric electrodes. Electrochemical electrodes are essential tools for studying electrochemical reactions and developing electrochemical devices.

Gold Disc Electrode

Gold Disc Electrode

Item Number: ELEGD

$59.90


We have the best electrochemical electrode solutions to meet the needs of any laboratory equipment. Our wide range of standard solutions and bespoke design service ensure that we can meet almost any customer requirement. We offer a variety of reference electrodes, including the silver/silver ion pseudo-reference electrode, as well as auxiliary electrodes made of platinum, carbon, copper, or stainless steel. We also provide battery and electrolysis electrodes, as well as the quinhydrone electrode to simplify the process of determining hydrogen ion concentration. Trust us to provide the highest quality electrochemical electrode solutions for your laboratory needs.

Applications of Electrochemical Electrode

  • Electrolysis
  • Batteries 
  • pH measurement 
  • Corrosion studies 
  • Bioelectrochemistry 
  • Environmental analysis 
  • Medical diagnostics 
  • Fuel cells 
  • Water treatment 
  • Industrial process control

Advantages of Electrochemical Electrode

  • High sensitivity and selectivity in detecting target analytes.
  • Can be used to monitor various chemical and biological processes in real-time.
  • Low detection limits, making them useful in trace analysis applications.
  • Easy to use, and can be operated by non-experts with minimal training.
  • Electrochemical electrodes can be customized to meet specific measurement requirements.
  • Electrochemical measurements can be carried out in situ and in real-time, making them suitable for use in process monitoring and control.
  • High stability and reproducibility of measurements, leading to reliable and accurate results.
  • Electrochemical sensors are compatible with a wide range of sample matrices, including liquids, gases, and solids.

Our electrochemical electrode is a cost-effective solution that is tailored to meet your specific requirements, thanks to our complete customisation service. Our extensive product line provides standard solutions, while our custom design service caters to more unique applications.

FAQ

What Is An Electrode In Electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What Are The 3 Electrodes In Electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

What Are The Different Types Of Electrochemical Electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What Materials Are Commonly Used For Electrochemical Electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

What Factors Should Be Considered When Selecting An Electrochemical Electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

How Can Electrochemical Electrodes Be Used In Various Applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Anchor of Truth: Why Physical Stability Defines Electrochemical Success

The Anchor of Truth: Why Physical Stability Defines Electrochemical Success

In electrochemistry, data integrity begins with physical stability. Discover why securing your electrolytic cell is the most critical step in your experiment.

Read more
The Transparency Paradox: Mastering the Fragile Art of Electrolytic Cells

The Transparency Paradox: Mastering the Fragile Art of Electrolytic Cells

Glass electrolytic cells are precision instruments, not simple containers. Learn the systematic approach to handling glass to ensure safety and data integrity.

Read more
The Thermodynamics of a Perfect Seal: A Component-Level Approach to Sterilization

The Thermodynamics of a Perfect Seal: A Component-Level Approach to Sterilization

Learn why autoclaving your entire electrolytic cell destroys the seal. A guide to understanding material properties and protecting your experiments.

Read more
The Art of the Shutdown: Engineering Reliability in Electrochemical Cells

The Art of the Shutdown: Engineering Reliability in Electrochemical Cells

Post-experiment procedures are not chores; they are the foundation of future accuracy. Learn the disciplined protocol for maintaining double-layer electrolytic cells.

Read more
The Invisible Variable: Why Electrolytic Cell Hygiene Defines Data Integrity

The Invisible Variable: Why Electrolytic Cell Hygiene Defines Data Integrity

Master the art of electrolytic cell maintenance. Discover how a strict cleaning protocol prevents cross-contamination and secures reproducible electrochemical results.

Read more
The Silent Deformation: Why Good Intentions Break Precision Glassware

The Silent Deformation: Why Good Intentions Break Precision Glassware

Discover the critical thermal limits of double-layer electrolytic cells. Learn why heating the assembly destroys precision and how to ensure experimental integrity.

Read more
The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

Cleaning a furnace tube isn't just maintenance; it's calibration. Learn the diagnostic process for quartz and alumina tubes to prevent contamination.

Read more
The Thermodynamics of Patience: Mastering the Five-Port Cell

The Thermodynamics of Patience: Mastering the Five-Port Cell

Precision in electrochemistry requires balancing thermal control with material limits. Learn to manage heat without compromising your PTFE seals or data integrity.

Read more
The Geometry of Control: Inside the Super-Sealed Electrolytic Cell

The Geometry of Control: Inside the Super-Sealed Electrolytic Cell

Why the 10-100ml volume and 5-aperture design became the gold standard for electrochemical precision, and how to choose the right setup.

Read more
The Geometry of Truth: Why the Electrolytic Cell Dictates Experimental Success

The Geometry of Truth: Why the Electrolytic Cell Dictates Experimental Success

Precision in electrochemistry relies on the vessel as much as the reaction. Explore the 50-500ml standard, the three-electrode system, and the art of cell design.

Read more
The Invisible Architecture of Accuracy: Optimizing the Five-Port Electrolytic Cell

The Invisible Architecture of Accuracy: Optimizing the Five-Port Electrolytic Cell

Master the critical pre-use protocols for five-port water bath electrolytic cells. Learn how meticulous preparation ensures reproducible electrochemical data.

Read more
The Invisible Variable: Why Electrolytic Cell Hygiene Defines Your Data

The Invisible Variable: Why Electrolytic Cell Hygiene Defines Your Data

Proper electrolytic cell maintenance prevents dangerous reactions and ensures data integrity. Learn the critical "no metal brush" rule and safety protocols.

Read more
The Geometry of Control: Why 1 cm² Defines Electrochemical Success

The Geometry of Control: Why 1 cm² Defines Electrochemical Success

Discover why the standard 1 cm² reaction area and precision O-ring sealing create the necessary baseline for repeatable, accurate electrochemical data.

Read more
The Architecture of Accuracy: Inside the Five-Port Electrolytic Cell

The Architecture of Accuracy: Inside the Five-Port Electrolytic Cell

Precision in electrochemistry relies on controlling the environment. Explore the engineering behind the five-port water bath cell and how it eliminates variables.

Read more
The Fragile Vessel of Truth: A Maintenance Manifesto for Electrolytic Cells

The Fragile Vessel of Truth: A Maintenance Manifesto for Electrolytic Cells

Data integrity relies on equipment health. Discover the psychological and technical art of maintaining five-port electrolytic cells for reproducible science.

Read more
The Choreography of Electrons: Why Precision Demands a Trinity

The Choreography of Electrons: Why Precision Demands a Trinity

Precision in coating evaluation isn't about power; it's about separation. Discover why the three-electrode system is the only way to silence electrochemical noise.

Read more
The Fragility of Precision: Mastering the Integrity of Five-Port Electrolytic Cells

The Fragility of Precision: Mastering the Integrity of Five-Port Electrolytic Cells

Prevent leaks in electrolytic cells through systematic inspection and proper assembly. A guide to mastering experimental seal integrity and reliability.

Read more
The Silent Variable: Why Material Purity Defines Electrochemical Truth

The Silent Variable: Why Material Purity Defines Electrochemical Truth

Discover why the all-quartz electrolytic cell is the hidden standard for high-precision electrochemistry, photoelectrochemistry, and contamination control.

Read more
The Art of Resistance: Why Your Electrolytic Cell Needs Breathing Room

The Art of Resistance: Why Your Electrolytic Cell Needs Breathing Room

Short circuits in electrolytic cells aren't just accidents; they are geometry failures. Learn how to control the electrical path and protect your lab equipment.

Read more
The Invisible Variable: Why Post-Experiment Rituals Define Scientific Truth

The Invisible Variable: Why Post-Experiment Rituals Define Scientific Truth

Post-experiment cleanup isn't a chore—it's a control variable. Learn the systematic care of all-quartz electrolytic cells to ensure reproducibility.

Read more