Products Lab Consumables & Materials Electrochemical Consumables Rotating Platinum Disk Electrode for Electrochemical Applications
Rotating Platinum Disk Electrode for Electrochemical Applications

Electrochemical Consumables

Rotating Platinum Disk Electrode for Electrochemical Applications

Item Number : ELEP

Price varies based on specs and customizations


$49.90 / set


Specifications
0.5 ~ 6mm, can be customized
Applicable temperature range
0 ~ 60℃
Rod Material
PTFE
Guide material
high Purity Platinum> 99.99%
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

Disk electrodes are essential components for electrochemical experiments, commonly used in three-electrode setups. They are circular with a small ring around the edge and can be micromachined to a very small size. Disk electrodes are often used for cost-efficient disposable electrodes and are key applications for electrochemical techniques like cyclic voltammetry and impedance spectroscopy.

Technical specifications

1.Pure Platinum 2.PTFE rod 3.Gold plated binding posts
                     1.Pure Platinum            2.PTFE rod                  3.Gold plated binding posts
Specifications 0.5 ~ 6mm, can be customized
Applicable temperature range 0 ~ 60℃
Rod Material PTFE
Guide material high Purity Platinum> 99.99%

Detail & Parts

Platinum disc electrode detail 1Platinum disc electrode detail 2Platinum disc electrode detail 3Platinum disc electrode detail 4Platinum disc electrode detail 5Platinum disc electrode detail 6Platinum disc electrode detail 6

Applications

Platinum Disc Electrodes are widely used in various electrochemical techniques for substrate analysis. Here are some key application areas:

  • Electrochemical analysis: Disk electrodes are used in a variety of electrochemical analysis techniques, such as cyclic voltammetry, chronoamperometry, and impedance spectroscopy. These techniques can be used to study the electrochemical properties of materials, such as their redox behavior, conductivity, and capacitance.
  • Electrocatalytic measurements: Platinum Disc Electrodes are commonly used as the disk electrode in rotating ring-disk electrodes (RRDEs) for electrocatalytic measurements. Due to its low electrocatalytic activity compared to Pt and Au, glassy carbon (GC) is often used as the disk electrode onto which the electrocatalyst is deposited.
  • Direct dropping experiments: Very small Platinum Disc Electrodes can be used for direct dropping experiments, where a small drop of a solution of interest is put directly onto the electrode and the electrical impedance is measured.
  • Fuel cells: Platinum thin films are crucial in fuel cells, providing high electro-catalytic property with low resistance.
  • Solar cells: Platinum counter electrodes are used in solar cells made of dye-synthesized TiO2, improving the ionic diffusion rate and enabling high current draw.
  • Gas electrodes and polymers: Platinum is deposited on various substrates like gas electrodes and polymers through impregnation and reduction methods. The sputtering technique allows for precise distribution of metal and homogenous particles with controlled thickness.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is An Electrode In Electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What Is Rotating Disk Electrode Used For?

Rotating disk electrode (RDE) is a hydrodynamic working electrode used in electrochemical applications such as corrosion studies, fuel cell research, catalyst development, and controlling mass transport of reactants to the electrode surface. It is used when defined mass transport to the sample electrode is desired. The disk's rotation induces a constant flux of analyte to the electrode, making it ideal for investigating different electrochemical phenomena such as multi-electron transfer, kinetics of slow electron transfer, adsorption/desorption steps, and electrochemical reaction mechanisms. In analytical chemistry, RDE is used in three-electrode systems for hydrodynamic voltammetry to investigate reaction mechanisms related to redox chemistry.

What Is The Function Of Auxiliary Electrode?

The auxiliary electrode, also known as the counter electrode, is an electrode used in a three-electrode electrochemical cell for voltammetric analysis or other reactions where an electric current is expected to flow. Its primary function is to provide a pathway for current flow in the electrochemical cell without passing a significant current through the reference electrode. It provides a means of applying input potential to the working electrode. The auxiliary electrode may be isolated from the working electrode to prevent any byproducts generated from contaminating the main test solution. It is often fabricated from electrochemically inert materials such as gold, platinum, or carbon.

What Are The Materials Used In Electrochemical Cell?

The materials used in an electrochemical cell are the anode, cathode, and electrolyte. The anode is the negative electrode that releases electrons to the external circuit and oxidizes during the electrochemical reaction. The cathode is the positive electrode that acquires electrons from the external circuit and is reduced during the electrochemical reaction. The electrolyte is the medium that provides the ion transport mechanism between the cathode and anode of a cell. The desirable properties for anode, cathode, and electrolyte materials include high efficiency, stability, good conductivity, ease of fabrication, and low cost.

What Are The 3 Electrodes In Electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

What Is The Rotating Electrode Method?

The rotating electrode method is a technique used in electrochemical applications such as fuel cell research, corrosion studies, catalyst development, and controlling mass transport of reactants to the electrode surface. It involves using a rotating disk electrode (RDE) that rotates during experiments, inducing a constant flux of analyte to the electrode. The RDE can quickly achieve conditions in which the steady-state current is controlled by the solution flow rather than diffusion. By running experiments at various rotation rates, different electrochemical phenomena can be investigated, including multi-electron transfer, adsorption/desorption steps, and electrochemical reaction mechanisms.

What Is The Difference Between Auxiliary And Reference Electrode?

The main difference between auxiliary and reference electrode lies in their function in an electrochemical cell. The auxiliary electrode, also known as the counter electrode, is used to facilitate charge transfer to and from the analyte and pass all the current so that the current at the working electrode can be controlled. On the other hand, the reference electrode is used to reference when measuring and controlling the potential of the working electrode and does not pass any current. The reference electrode has a fixed potential, while the potential of the auxiliary electrode can change.

What Are The Examples Of Electrochemical Material?

Examples of electrochemical materials include anode materials for the oxidation of acetic acid, cathode materials for the reduction of acrylonitrile, and electrode materials for the cathodic hydrodimerization of formaldehyde to ethylene glycol. Selectivity for synthetic electrochemical reactions can be determined by the materials used, with electrode materials imparting control and variation of outcomes. The choice of electrode material can also switch reactivity on or off, such as with the cathodic hydrodimerization of formaldehyde only occurring with mercury or carbon cathodes. Understanding the influence of electrode materials can facilitate improved rationalization of differences in achieved yields or selectivity.

What Are The Different Types Of Electrochemical Electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What Is The Rotating Ring-disk Electrode Method?

The rotating ring-disk electrode (RRDE) is a double working electrode used in analytical chemistry for hydrodynamic voltammetry. It is designed for investigating reaction mechanisms related to redox chemistry and other chemical phenomena. The RRDE has a disk electrode at its center and a ring electrode around the disk. The system takes advantage of the laminar flow created during rotation, allowing for controlled contact of the solution with the disk and ring electrodes. By varying the rate of rotation, it is possible to determine the rate of the chemical reaction and investigate different electrochemical phenomena.

What Materials Are Commonly Used For Auxiliary Electrodes?

The choice of materials for auxiliary electrodes depends on the specific electrochemical system and the desired reaction. Common materials for auxiliary electrodes include platinum, graphite, stainless steel, and certain metal alloys. These materials are typically inert and do not participate in the desired electrochemical reaction, ensuring that the auxiliary electrode's role remains solely as a conductor for current flow.

What Materials Are Commonly Used For Electrochemical Electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

What Are The Advantages Of Rotating Disc Electrode?

The advantages of rotating disk electrodes (RDE) include the ability to control mass transport of reactants to the electrode surface, achieve laminar flow of solution towards and across the electrode, and investigate different electrochemical phenomena such as multi-electron transfer and electrochemical reaction mechanisms. RDEs are commonly used in electrochemical applications such as corrosion studies, fuel cell research, and catalyst development. The base rotation rate of RDEs can be manually adjusted, and the electrode rotation rate can be precisely controlled with an electric motor. RDEs are a powerful tool for investigating reaction mechanisms related to redox chemistry and other chemical phenomena.

How Do Auxiliary Electrodes Affect The Performance Of An Electrochemical Cell?

Auxiliary electrodes play a crucial role in the performance of electrochemical cells. They help maintain a balanced electrical potential, minimizing side reactions or unwanted reactions at the working electrode. The choice of appropriate materials for the auxiliary electrode is essential to prevent contamination or interference with the desired electrochemical process. Additionally, the design and positioning of the auxiliary electrode within the cell can impact overall efficiency and uniformity of current distribution. Proper selection and placement of auxiliary electrodes can enhance the performance, accuracy, and reproducibility of electrochemical measurements or processes.

What Factors Should Be Considered When Selecting An Electrochemical Electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

Why Are Auxiliary Electrodes Necessary In Electrochemical Systems?

Auxiliary electrodes are necessary in electrochemical systems to maintain electrical neutrality and ensure the flow of current. In many electrochemical reactions, the desired reaction occurs at the working electrode, while the auxiliary electrode acts as a counterbalance. It helps to complete the circuit by providing a path for the flow of electrons or ions, thereby allowing the continuous movement of charge and ensuring the overall electrochemical reaction proceeds smoothly and efficiently.

How Can Electrochemical Electrodes Be Used In Various Applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.

Are There Any Limitations Or Considerations When Using Auxiliary Electrodes?

When using auxiliary electrodes, several limitations and considerations should be taken into account. The choice of materials for the auxiliary electrode is critical to prevent any unwanted reactions or contamination that could affect the desired electrochemical process. Compatibility between the auxiliary electrode and the electrolyte or reactants should be considered to ensure stability and long-term performance. Additionally, the design and positioning of the auxiliary electrode should be carefully optimized to minimize current distribution issues or potential interference with the working electrode. It is also essential to regularly monitor and maintain the auxiliary electrode to prevent degradation or contamination that could impact its performance. Finally, the size and shape of the auxiliary electrode should be considered to ensure compatibility with the specific electrochemical cell or system being used.
View more faqs for this product

4.8

out of

5

Platinum disc electrode is a great product, definitely worth the price. It's super durable and easy to use, definitely recommend!

Ryleigh Lam

4.9

out of

5

The technology behind this electrode is amazing. I was able to get accurate and consistent results with ease.

Ines Oliver

4.7

out of

5

The quality of the electrode is top-notch. The platinum coating is thick and evenly distributed, resulting in consistent and reliable measurements.

Haris Burhan

4.8

out of

5

The delivery was super fast, I received my order within 2 days. The packaging was also very secure, ensuring the product's safety during transit.

Ines Oliver

4.6

out of

5

This electrode is a game-changer. It has helped me obtain more precise data in my electrochemical experiments.

Kevin Skaggs

4.9

out of

5

The electrode's performance exceeded my expectations. It's a great value for money, and I highly recommend it to anyone in the field of electrochemistry.

Aiden Beatty

4.8

out of

5

The customer service is excellent. I had a minor issue with my order, and they resolved it promptly and efficiently.

Aaliyah Salas

4.7

out of

5

The durability of this electrode is impressive. I've been using it for months, and it still performs as well as when I first got it.

Ethan Stevens

4.9

out of

5

The technological advancement of this electrode is remarkable. It incorporates cutting-edge features that make it stand out in the market.

Jasmine Rodriguez

4.8

out of

5

The electrode's design is well-thought-out, making it user-friendly and efficient for various electrochemical applications.

Mason Ortiz

4.7

out of

5

The electrode's compatibility with different electrochemical instruments is a huge plus, allowing for seamless integration into existing setups.

Liam Romero

4.9

out of

5

The electrode's versatility makes it suitable for a wide range of experiments, catering to diverse research needs.

Isabella Medina

4.8

out of

5

The electrode's accuracy and precision are commendable, providing reliable and reproducible data for analysis.

Cameron Bowers

4.7

out of

5

The electrode's durability is exceptional, withstanding repeated use and harsh experimental conditions without compromising performance.

Audrey Roberts

4.9

out of

5

The electrode's affordability makes it accessible to researchers with limited budgets, promoting wider adoption and scientific advancements.

Elijah Martinez

4.8

out of

5

The electrode's compact design and portability make it convenient for use in various laboratory settings, facilitating research on the go.

Emily Jacobs

4.7

out of

5

The electrode's ease of maintenance and cleaning minimizes downtime, maximizing productivity and efficiency in the laboratory.

Benjamin Hall

PDF - Rotating Platinum Disk Electrode for Electrochemical Applications

Download

Catalog of Electrochemical Consumables

Download

Catalog of Electrochemical Electrode

Download

Catalog of Rotating Disc Electrode

Download

Catalog of Auxiliary Electrode

Download

Catalog of Electrochemical Material

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Rotating Disk Electrode and Rotating Ring Disk Electrode (RRDE)

Rotating Disk Electrode and Rotating Ring Disk Electrode (RRDE)

Elevate your electrochemical research with our Rotating Disk and Ring Electrodes. Corrosion resistant and customizable to your specific needs, with complete specifications.

Platinum Sheet Electrode for Laboratory and Industrial Applications

Platinum Sheet Electrode for Laboratory and Industrial Applications

Elevate your experiments with our Platinum Sheet Electrode. Crafted with quality materials, our safe and durable models can be tailored to fit your needs.

Platinum Sheet Electrode for Battery Lab Applications

Platinum Sheet Electrode for Battery Lab Applications

Platinum sheet is composed of platinum, which is also one of the refractory metals. It is soft and can be forged, rolled and drawn into rod, wire, plate, tube and wire.

Electrode Polishing Material for Electrochemical Experiments

Electrode Polishing Material for Electrochemical Experiments

Looking for a way to polish your electrodes for electrochemical experiments? Our polishing materials are here to help! Follow our easy instructions for best results.

Graphite Disc Rod and Sheet Electrode Electrochemical Graphite Electrode

Graphite Disc Rod and Sheet Electrode Electrochemical Graphite Electrode

High-quality graphite electrodes for electrochemical experiments. Complete models with acid and alkali resistance, safety, durability, and customization options.

Gold Electrochemical Sheet Electrode Gold Electrode

Gold Electrochemical Sheet Electrode Gold Electrode

Discover high-quality gold sheet electrodes for safe and durable electrochemical experiments. Choose from complete models or customize to meet your specific needs.

PTFE Electrolytic Cell Electrochemical Cell Corrosion-Resistant Sealed and Non-Sealed

PTFE Electrolytic Cell Electrochemical Cell Corrosion-Resistant Sealed and Non-Sealed

Choose our PTFE Electrolytic Cell for reliable, corrosion-resistant performance. Customize specifications with optional sealing. Explore now.

Electrolytic Electrochemical Cell with Five-Port

Electrolytic Electrochemical Cell with Five-Port

Streamline your laboratory consumables with Kintek's Electrolytic Cell with five-port design. Choose from sealed and non-sealed options with customizable electrodes. Order now.

Copper Sulfate Reference Electrode for Laboratory Use

Copper Sulfate Reference Electrode for Laboratory Use

Looking for a Copper Sulfate Reference Electrode? Our complete models are made of high-quality materials, ensuring durability and safety. Customization options available.

Flat Corrosion Electrolytic Electrochemical Cell

Flat Corrosion Electrolytic Electrochemical Cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

Electrolytic Electrochemical Cell for Coating Evaluation

Electrolytic Electrochemical Cell for Coating Evaluation

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Lab Electrochemical Workstation Potentiostat for Laboratory Use

Lab Electrochemical Workstation Potentiostat for Laboratory Use

Electrochemical workstations, also known as laboratory electrochemical analyzers, are sophisticated instruments designed for precise monitoring and control in various scientific and industrial processes.

Related Articles

Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Explore the detailed workings, applications, and significance of Rotating Disk Electrodes (RDE) in electrochemical research. Discover how RDEs are used in fuel cells, catalyst development, and more.

Find out more
Electrode Materials for Rotating Ring-Disk Electrodes

Electrode Materials for Rotating Ring-Disk Electrodes

Rotating ring-disk electrodes (RRDEs) are used in a wide range of applications, from fuel cells to sensors, and they require careful selection of electrode materials for optimal performance.

Find out more
Electrochemical Electrodes in Chemical Analysis

Electrochemical Electrodes in Chemical Analysis

Electrochemical electrodes are essential tools used in many chemical analysis techniques and experiments. These electrodes are devices that allow us to measure the electrical potential difference in a chemical reaction.

Find out more
Understanding Electrodeposition with Electrochemical Electrodes

Understanding Electrodeposition with Electrochemical Electrodes

Electrodeposition is a process of depositing a metal or a non-metallic material onto a surface by applying an electric current.

Find out more
Electrolytes and Electrochemical Electrodes

Electrolytes and Electrochemical Electrodes

Electrolytes and electrodes play an essential role in electrochemistry. Electrolytes are substances that conduct electricity when dissolved in water or melted.

Find out more
Innovations in Electrochemical Electrodes Technology

Innovations in Electrochemical Electrodes Technology

Recent advancements in nanotechnology and materials science have led to significant improvements in electrochemical devices, making them more efficient, durable, and cost-effective.

Find out more
Comprehensive Guide to Reference Electrodes: Types, Applications, and Selection Criteria

Comprehensive Guide to Reference Electrodes: Types, Applications, and Selection Criteria

Explore the world of reference electrodes with our detailed guide. Learn about different types, their applications, and how to select the right one for your needs. Ideal for researchers and lab technicians.

Find out more
A Comprehensive Guide to Reference Electrodes

A Comprehensive Guide to Reference Electrodes

Reference electrodes are used in electrochemical measurements to establish a stable potential against which the potential of the working electrode can be measured.

Find out more
The Future of Electrochemical Electrodes

The Future of Electrochemical Electrodes

The latest trends and developments in electrode materials and their implications for the future of electrochemistry.

Find out more
A Beginner's Guide to Understanding Reference Electrodes in Electrochemistry

A Beginner's Guide to Understanding Reference Electrodes in Electrochemistry

Reference electrodes provide a stable and known potential that other electrodes can be compared to, allowing for accurate measurements of electrochemical reactions.

Find out more
How to Choose the Right Electrochemical Electrode

How to Choose the Right Electrochemical Electrode

The choice of electrode material can have a significant impact on the performance of the electrochemical system.

Find out more
Advantages of the Rotating Electrode Method

Advantages of the Rotating Electrode Method

Rotating electrode method involves rotating a small working electrode to increase the mass transport of reactants and products, allowing for more precise measurements and better control of reaction conditions.

Find out more