Products Lab Consumables & Materials Electrochemical Consumables Electrode Polishing Material for Electrochemical Experiments
Electrode Polishing Material for Electrochemical Experiments

Electrochemical Consumables

Electrode Polishing Material for Electrochemical Experiments

Item Number : ELMP

Price varies based on specs and customizations


$69.00 / set


ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Polishing Materials for Electrodes in Electrochemical Experiments

Electrode Polishing and Testing Instructions

  1. Prepare electrode polishing materials. Remove the backing adhesive from the chamois polishing cloth and affix it to the electrode polishing plate. Pour polishing powder (1.0/0.5/0.3/0.05um) in reverse order onto the polishing cloth and moisten it with distilled water to form a paste.
  2. Place the electrode vertically on the polishing pad and polish by drawing "8" shapes, clockwise or counterclockwise circles, or horizontal strokes. It is important to ensure that the electrode is perpendicular to the polishing cloth. After polishing, rinse the electrode surface clean with distilled water.
  3. Choose cyclic voltammetry on the electrochemical workstation and test the electrode in a standard solution of potassium ferrocyanide. If the peak position difference is within 80mv, the electrode can be considered qualified.
  4. Take two clean beakers and place a dry ethanol (a) and a secondary deionized water (b) in them. Place the tested electrode in the two solutions in order (a, b) and clean it with ultrasonic waves for no more than 60 seconds. Remove the electrode and blow it dry before use.
  5. If the electrode needs modification, invert it on the electrode drying stand and apply drops.

Detail & Parts

polishing materials A
A complete set of polishing materials A (aluminum oxide powder, suede, glass base, flannelette, sampling spoon)

alumina powder, suedepolishing blockElectrode polishing materialsuede and glass basesuede and glass baseElectrode polishing material set

Disc Electrode Polishing Steps

0.05um alumina powder is the most suitable for polishing disk-shaped electrodes. However, if scratches are found on the electrode, you need to use 1.0um, 0.3um, and 0.05um alumina powder in sequence to polish the electrode. After each polishing step, check the electrode surface, which should be flat and neat. Also, use the same alumina powder for polishing. If 1.0um alumina powder cannot remove scratches, you should first use 1200-grit metallographic sandpaper to polish and then use 0.05um alumina powder. The electrode surface will have a mirror-like luster.

Nylon polishing cloth and silk velvet cloth are used with 1.0um alumina powder, and the polishing flannel (coffee-colored) is prepared for 0.3um and 0.05um alumina powder. The back of the cloth has stickiness. Tear off the covering layer on the stickiness and press the polishing cloth tightly onto the dry and clean glass pad. Ensure that there are no bubbles between the glass pad and the polishing cloth. Before polishing, sprinkle a small amount of alumina powder on the polishing cloth and moisten it with distilled water. When polishing, hold the electrode vertically and steadily (not too hard). If the polishing cloth becomes dry, add distilled water and continue polishing.

Before using smaller alumina powder, thoroughly clean the electrode and wash your hands with water. If you accidentally sprinkle large powder on the small powder polishing cloth, you will not achieve the effect that small powder can achieve. Be careful when holding dry powder. Do not put large powder into small powder bottles. Do not exchange powder bottle caps at will. Use different spoons for different bottles when taking alumina powder from the bottle.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is An Electrode In Electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What Are The Materials Used In Electrochemical Cell?

The materials used in an electrochemical cell are the anode, cathode, and electrolyte. The anode is the negative electrode that releases electrons to the external circuit and oxidizes during the electrochemical reaction. The cathode is the positive electrode that acquires electrons from the external circuit and is reduced during the electrochemical reaction. The electrolyte is the medium that provides the ion transport mechanism between the cathode and anode of a cell. The desirable properties for anode, cathode, and electrolyte materials include high efficiency, stability, good conductivity, ease of fabrication, and low cost.

What Are The 3 Electrodes In Electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

What Are The Examples Of Electrochemical Material?

Examples of electrochemical materials include anode materials for the oxidation of acetic acid, cathode materials for the reduction of acrylonitrile, and electrode materials for the cathodic hydrodimerization of formaldehyde to ethylene glycol. Selectivity for synthetic electrochemical reactions can be determined by the materials used, with electrode materials imparting control and variation of outcomes. The choice of electrode material can also switch reactivity on or off, such as with the cathodic hydrodimerization of formaldehyde only occurring with mercury or carbon cathodes. Understanding the influence of electrode materials can facilitate improved rationalization of differences in achieved yields or selectivity.

What Are The Different Types Of Electrochemical Electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What Materials Are Commonly Used For Electrochemical Electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

What Factors Should Be Considered When Selecting An Electrochemical Electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

How Can Electrochemical Electrodes Be Used In Various Applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.
View more faqs for this product

4.9

out of

5

These polishing materials greatly enhance the quality of my experiments. The electrodes are polished to a mirror-like finish, resulting in more accurate and reproducible results.

Lucas Esteban

4.7

out of

5

I've been using these materials for a few months now and am thoroughly impressed with their durability. They last much longer than other brands I've tried, saving me both time and money.

Oliver Clark

4.8

out of

5

The polishing materials are incredibly easy to use. The instructions are clear and concise, making the process hassle-free. I highly recommend these materials to anyone looking for a reliable and efficient way to polish their electrodes.

Amelia Harrison

4.6

out of

5

The fast delivery of these materials was a lifesaver. I needed them urgently for a project and was thrilled when they arrived the next day. The quality is excellent, and I'm very satisfied with my purchase.

Jack Miller

4.9

out of

5

These polishing materials are worth every penny. They produce a superior finish on my electrodes, and I've noticed a significant improvement in the performance of my electrochemical experiments.

Isabella Garcia

4.7

out of

5

I'm very impressed with the technological advancements in these polishing materials. They're designed to minimize contamination and ensure the highest level of accuracy in my experiments. Highly recommended!

Benjamin White

4.8

out of

5

These materials are an absolute game-changer for my lab. They've streamlined our electrode polishing process, saving us valuable time and resources. The results are consistently excellent, and we're thrilled with the investment.

Ava Johnson

4.6

out of

5

I've been using these polishing materials for over a year now, and they've never let me down. They're incredibly durable and maintain their effectiveness even after multiple uses. Highly recommend!

Liam Brown

4.9

out of

5

These polishing materials are a must-have for any electrochemist. They're incredibly easy to use, and the results are consistently outstanding. I've seen a noticeable improvement in the quality of my data since switching to these materials.

Sophia Davis

PDF - Electrode Polishing Material for Electrochemical Experiments

Download

Catalog of Electrochemical Consumables

Download

Catalog of Electrochemical Electrode

Download

Catalog of Electrochemical Material

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Graphite Disc Rod and Sheet Electrode Electrochemical Graphite Electrode

Graphite Disc Rod and Sheet Electrode Electrochemical Graphite Electrode

High-quality graphite electrodes for electrochemical experiments. Complete models with acid and alkali resistance, safety, durability, and customization options.

Gold Electrochemical Sheet Electrode Gold Electrode

Gold Electrochemical Sheet Electrode Gold Electrode

Discover high-quality gold sheet electrodes for safe and durable electrochemical experiments. Choose from complete models or customize to meet your specific needs.

Gold Disc Electrode

Gold Disc Electrode

Looking for a high-quality gold disc electrode for your electrochemical experiments? Look no further than our top-of-the-line product.

Platinum Auxiliary Electrode for Laboratory Use

Platinum Auxiliary Electrode for Laboratory Use

Optimize your electrochemical experiments with our Platinum Auxiliary Electrode. Our high-quality, customizable models are safe and durable. Upgrade today!

Rotating Platinum Disk Electrode for Electrochemical Applications

Rotating Platinum Disk Electrode for Electrochemical Applications

Upgrade your electrochemical experiments with our Platinum Disc Electrode. High-quality and reliable for accurate results.

Electrode Fixture for Electrochemical Experiments

Electrode Fixture for Electrochemical Experiments

Upgrade your experiments with our customizable Electrode Fixtures. High-quality materials, acid and alkali resistant, and safe and durable. Discover our complete models today.

Rotating Disk Electrode and Rotating Ring Disk Electrode (RRDE)

Rotating Disk Electrode and Rotating Ring Disk Electrode (RRDE)

Elevate your electrochemical research with our Rotating Disk and Ring Electrodes. Corrosion resistant and customizable to your specific needs, with complete specifications.

Electrolytic Electrochemical Cell for Coating Evaluation

Electrolytic Electrochemical Cell for Coating Evaluation

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Flat Corrosion Electrolytic Electrochemical Cell

Flat Corrosion Electrolytic Electrochemical Cell

Discover our flat corrosion electrolytic cell for electrochemical experiments. With exceptional corrosion resistance and complete specifications, our cell guarantees optimal performance. Our high-quality materials and good sealing ensure a safe and durable product, and customization options are available.

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Looking for a reliable quartz electrochemical cell? Our product boasts excellent corrosion resistance and complete specifications. With high-quality materials and good sealing, it's both safe and durable. Customize to meet your needs.

Super Sealed Electrolytic Electrochemical Cell

Super Sealed Electrolytic Electrochemical Cell

Super-sealed electrolytic cell offers enhanced sealing capabilities, making it ideal for experiments that require high airtightness.

Optical Water Bath Electrolytic Electrochemical Cell

Optical Water Bath Electrolytic Electrochemical Cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Looking for a high-quality gas diffusion electrolysis cell? Our liquid flow reaction cell boasts exceptional corrosion resistance and complete specifications, with customizable options available to suit your needs. Contact us today!

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible and Evaporation Boat

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

High Temperature Resistant High Borosilicate Glass Stirring Rod Flow Diversion Laboratory Glass Rod

High Temperature Resistant High Borosilicate Glass Stirring Rod Flow Diversion Laboratory Glass Rod

Used in chemical experiments, a glassy thin and long rod-shaped simple stirrer, also known as a glass rod.

Related Articles

Understanding Electrodeposition with Electrochemical Electrodes

Understanding Electrodeposition with Electrochemical Electrodes

Electrodeposition is a process of depositing a metal or a non-metallic material onto a surface by applying an electric current.

Find out more
How to Make Your Own Ag/AgCl Reference Electrode for Electrochemical Experiments

How to Make Your Own Ag/AgCl Reference Electrode for Electrochemical Experiments

A reference electrode is an electrode with a stable and well-defined potential that is used as a reference point to measure the potential of other electrodes. Reference electrodes are commonly used in electrochemical experiments to determine the potential difference between two electrodes.

Find out more
Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Comprehensive Guide to Rotating Disk Electrode (RDE) in Electrochemical Studies

Explore the detailed workings, applications, and significance of Rotating Disk Electrodes (RDE) in electrochemical research. Discover how RDEs are used in fuel cells, catalyst development, and more.

Find out more
Electrode Materials for Rotating Ring-Disk Electrodes

Electrode Materials for Rotating Ring-Disk Electrodes

Rotating ring-disk electrodes (RRDEs) are used in a wide range of applications, from fuel cells to sensors, and they require careful selection of electrode materials for optimal performance.

Find out more
Electrochemical Electrodes in Chemical Analysis

Electrochemical Electrodes in Chemical Analysis

Electrochemical electrodes are essential tools used in many chemical analysis techniques and experiments. These electrodes are devices that allow us to measure the electrical potential difference in a chemical reaction.

Find out more
How to Choose the Right Electrochemical Electrode

How to Choose the Right Electrochemical Electrode

The choice of electrode material can have a significant impact on the performance of the electrochemical system.

Find out more
Electrolytes and Electrochemical Electrodes

Electrolytes and Electrochemical Electrodes

Electrolytes and electrodes play an essential role in electrochemistry. Electrolytes are substances that conduct electricity when dissolved in water or melted.

Find out more
Advanced Techniques in Coating Evaluation Using Electrolytic Cells

Advanced Techniques in Coating Evaluation Using Electrolytic Cells

Explore the comprehensive guide on coating evaluation using electrolytic cells, covering electroplating, sol-gel methods, and wet chemical techniques. Enhance your understanding of metal coating properties and applications.

Find out more
Electrochemical Consumables: A Comprehensive Guide to Materials, Applications, and Selection

Electrochemical Consumables: A Comprehensive Guide to Materials, Applications, and Selection

Discover the world of electrochemical consumables, including types of electrodes (working, auxiliary, and reference) and electrolytes, as well as factors to consider when selecting materials for your electrochemical experiments or applications.

Find out more
A Beginner's Guide to Understanding Reference Electrodes in Electrochemistry

A Beginner's Guide to Understanding Reference Electrodes in Electrochemistry

Reference electrodes provide a stable and known potential that other electrodes can be compared to, allowing for accurate measurements of electrochemical reactions.

Find out more
The Future of Electrochemical Electrodes

The Future of Electrochemical Electrodes

The latest trends and developments in electrode materials and their implications for the future of electrochemistry.

Find out more
A Comprehensive Guide to Reference Electrodes

A Comprehensive Guide to Reference Electrodes

Reference electrodes are used in electrochemical measurements to establish a stable potential against which the potential of the working electrode can be measured.

Find out more