Knowledge What is the major disadvantage of thermal evaporation system?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

What is the major disadvantage of thermal evaporation system?

The major disadvantage of thermal evaporation systems is their high impurity levels and the resulting low-density films. This can be mitigated to some extent by using ion-assist sources, but it remains a significant limitation.

High Impurity Levels: Thermal evaporation systems tend to exhibit the highest impurity levels among physical vapor deposition (PVD) methods. This is primarily because the process involves heating the source material to a high temperature in a vacuum chamber. During this heating, any impurities or contaminants present in the source material can also evaporate and become part of the deposited film. This can lead to films with poor quality, affecting their performance in applications requiring high purity.

Low-Density Films: The films produced by thermal evaporation often have low density, which means they might not adhere well to the substrate and can be porous. This porosity can affect the mechanical and electrical properties of the film, making it less suitable for applications where a dense, uniform film is required. The low density also contributes to the high impurity levels, as pores can trap impurities or allow them to migrate through the film.

Mitigation with Ion-Assist: While thermal evaporation inherently produces films with these disadvantages, the use of ion-assist sources can help improve the situation. Ion-assist involves bombarding the depositing film with ions, which can increase the density and reduce the porosity of the film. This process can also help in removing or reducing impurities, thereby improving the overall quality of the film. However, the addition of ion-assist sources increases the complexity and cost of the system, which might not be feasible for all applications.

In summary, while thermal evaporation is a relatively simple and cost-effective PVD method, its major disadvantage lies in the high impurity levels and low-density films it produces. Although these issues can be addressed to some extent by using ion-assist sources, they remain significant challenges that need to be considered when choosing a deposition method for specific applications.

Discover the ultimate solution to overcoming the limitations of traditional thermal evaporation systems with KINTEK SOLUTION's advanced PVD technology. Our innovative ion-assist sources not only enhance the quality and density of films but also reduce impurities for superior results. Upgrade your deposition process with our cutting-edge solutions and experience the future of high-purity, dense films today. Reach out to KINTEK SOLUTION and elevate your research to new heights!

Related Products

0.5-1L Rotary Evaporator

0.5-1L Rotary Evaporator

Looking for a reliable and efficient rotary evaporator? Our 0.5-1L rotary evaporator uses constant temperature heating and thin film evaporating to implement a range of operations, including solvent removal and separation. With high-grade materials and safety features, it's perfect for labs in pharmaceutical, chemical, and biological industries.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

0.5-4L Rotary Evaporator

0.5-4L Rotary Evaporator

Efficiently separate "low boiling" solvents with a 0.5-4L rotary evaporator. Designed with high-grade materials, Telfon+Viton vacuum sealing, and PTFE valves for contamination-free operation.

2-5L Rotary Evaporator

2-5L Rotary Evaporator

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

20L Rotary Evaporator

20L Rotary Evaporator

Efficiently separate "low boiling" solvents with the 20L Rotary Evaporator, ideal for chemical labs in pharmaceutical and other industries. Guarantees working performance with selected materials and advanced safety features.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

5-50L Rotary Evaporator

5-50L Rotary Evaporator

Efficiently separate low-boiling solvents with the 5-50L Rotary Evaporator. Ideal for chemical labs, it offers precise and safe evaporating processes.

10-50L Rotary Evaporator

10-50L Rotary Evaporator

Efficiently separate low boiling solvents with KT Rotary Evaporator. Guaranteed performance with high-grade materials and flexible modular design.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

evaporation boat for organic matter

evaporation boat for organic matter

The evaporation boat for organic matter is an important tool for precise and uniform heating during the deposition of organic materials.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Ceramic Evaporation Boat Set

Ceramic Evaporation Boat Set

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1


Leave Your Message