Knowledge What Temperature is Chemical Vapor Deposition? (4 Key Temperatures Explained)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

What Temperature is Chemical Vapor Deposition? (4 Key Temperatures Explained)

Chemical Vapor Deposition (CVD) is a process where a substrate is exposed to volatile precursors. These precursors react and/or decompose on the substrate surface to produce a desired deposit. The temperature used in CVD can vary depending on the specific application.

What Temperature is Chemical Vapor Deposition? (4 Key Temperatures Explained)

What Temperature is Chemical Vapor Deposition? (4 Key Temperatures Explained)

1. Typical CVD Temperatures

In typical CVD, the substrate is exposed to one or more volatile precursors with high vapor pressure at low temperatures. These temperatures range from 373–673 K (100-400 °C). The precursors can be chlorides or organometallic compounds. The low temperature is chosen to ensure the precursors are in the gas phase and can easily react on the substrate surface to form the desired deposit.

2. High Temperatures in Oil Distillation

In other applications, such as the distillation of oil or the evaporation of solvents in a rotary evaporator, higher temperatures are used. For example, in wiped film short-path molecular stills used for oil distillation, temperatures can reach up to 343 degrees Celsius (650 degrees Fahrenheit). The typical distillation temperature range is 130-180 degrees Celsius (266-356 degrees Fahrenheit). In these systems, the feedstock or solvent is distributed on the evaporation chamber wall and a thin film is formed. The more volatile components evaporate and are collected separately, while the desired compound is collected at a cooler temperature-controlled central condenser unit. The final step in the process is solvent removal, which is typically done in a separate, external cold trap that is also temperature controlled.

3. The "Delta 20" Rule in Rotary Evaporators

In a rotary evaporator, the "Delta 20" rule of thumb is used to optimize the evaporation process. According to this rule, the effective vapor temperature is approximately 20 degrees Celsius lower than the set temperature at the heating bath. This is because the evaporation process gives off energy and heat from the liquid mixture. For efficient condensation, the cooling temperature at the condenser should be at least 20 degrees Celsius lower than the effective vapor temperature.

4. Overall Temperature Considerations in CVD

Overall, the temperature in chemical vapor deposition can vary depending on the specific application and the precursors or compounds being used. It is important to choose the appropriate temperature to ensure the desired deposition or evaporation process is carried out effectively.

Continue exploring, consult our experts

Looking for high-quality laboratory equipment for chemical vapor deposition (CVD) processes? Look no further than KINTEK! Our state-of-the-art wiped film short-path stills can reach temperatures up to 343 degrees Celsius, ensuring efficient and precise deposition. Our equipment is designed to distribute feedstock evenly, allowing for optimal evaporation and collection of desired deposits. Don't compromise on quality and reliability - choose KINTEK for all your CVD equipment needs. Contact us today to learn more!

Related Products

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

Multi heating zones CVD tube furnace CVD machine

Multi heating zones CVD tube furnace CVD machine

KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Molecular Distillation

Molecular Distillation

Purify and concentrate natural products with ease using our molecular distillation process. With high vacuum pressure, low operating temperatures, and short heating times, preserve the natural quality of your materials while achieving excellent separation. Discover the advantages today!

20L Short Path Distillation

20L Short Path Distillation

Efficiently extract and purify mixed liquids with our 20L short path distillation system. High vacuum and low temperature heating for optimal results.

10L Short Path Distillation

10L Short Path Distillation

Extract and purify mixed liquids with ease using our 10L short path distillation system. High vacuum and low temperature heating for optimal results.

2L Short Path Distillation

2L Short Path Distillation

Extract and purify with ease using our 2L short path distillation kit. Our heavy-duty Borosilicate glassware, fast heating mantle, and delicate fitting device ensure efficient and high-quality distillation. Discover the advantages today!

0.5-4L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

0.5-4L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate "low boiling" solvents with a 0.5-4L rotary evaporator. Designed with high-grade materials, Telfon+Viton vacuum sealing, and PTFE valves for contamination-free operation.

5L Short Path Distillation

5L Short Path Distillation

Experience efficient and high-quality 5L short path distillation with our durable Borosilicate glassware, fast heating mantle, and delicate fitting device. Extract and purify your target mixed liquids with ease under high vacuum conditions. Learn more about its advantages now!

20L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

20L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate "low boiling" solvents with the 20L Rotary Evaporator, ideal for chemical labs in pharmaceutical and other industries. Guarantees working performance with selected materials and advanced safety features.

10-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

10-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate low boiling solvents with KT Rotary Evaporator. Guaranteed performance with high-grade materials and flexible modular design.

5-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

5-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate low-boiling solvents with the 5-50L Rotary Evaporator. Ideal for chemical labs, it offers precise and safe evaporating processes.

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Looking for a reliable and efficient rotary evaporator? Our 0.5-1L rotary evaporator uses constant temperature heating and thin film evaporating to implement a range of operations, including solvent removal and separation. With high-grade materials and safety features, it's perfect for labs in pharmaceutical, chemical, and biological industries.


Leave Your Message