Products Thermal Equipment Atmosphere Furnace Hydrogen atmosphere furnace
Hydrogen atmosphere furnace

Atmosphere Furnace

Hydrogen atmosphere furnace

Item Number : KT-16AH

Price varies based on specs and customizations


Max. temperature
1600 ℃
Constant work temperature
1500 ℃
Vacuum pressure
0.1 Mpa
Effective volume
4.5-64 L
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The Hydrogen Atmosphere Furnace is a specialized heating device designed for sintering or annealing materials in a controlled hydrogen or inert gas environment, adjustable up to 1600°C. It features a double-shell structure with air and water cooling systems, high-purity molybdenum wire heating elements, and advanced safety mechanisms including automatic hydrogen tail gas ignition and pressure control systems. Ideal for processing materials like optical materials and titanium alloys, this furnace ensures precise and safe operation in reducing or inert gas atmospheres.

Applications

The Hydrogen Atmosphere Furnace is a specialized equipment designed for various high-temperature processes that require a controlled environment, particularly in the presence of hydrogen or inert gases. This furnace is ideal for applications where the prevention of oxidation or other chemical reactions is crucial, ensuring the integrity and quality of the materials being processed. Below are the main application areas of this product:

  • Sintering of Advanced Materials: Ideal for the consolidation of powders into solid materials, especially for high-performance ceramics and metals that require a specific atmosphere to prevent oxidation.
  • Annealing Processes: Used for the controlled heating and cooling of materials, particularly metals, to remove internal stresses, soften materials, or alter electrical properties.
  • Heat Treatment of Titanium Alloys: Essential for the thermal processing of titanium and its alloys in a controlled hydrogen or inert gas environment to enhance mechanical properties and prevent surface contamination.
  • Processing of Optical Materials: Particularly useful for the sintering and annealing of optical materials like phosphors and other luminescent materials that require a clean, controlled atmosphere to maintain optical clarity and performance.
  • Research and Development: Widely used in laboratories and research facilities for experiments involving high-temperature reactions in controlled atmospheres, aiding in the development of new materials and processes.
  • Manufacturing of Electronic Components: Critical for the production of semiconductors and other electronic components that require precise temperature control and a clean environment to ensure high performance and reliability.

Detail & Parts

Hydrogen atmosphere furnace detail 1
The hydrogen atmosphere furnace is specially designed for sintering or annealing materials in a hydrogen environment or an inert gas environment. It uses alumina fiber as the furnace body material, molybdenum wire as the heating element, and a cooling water pipe is embedded in the sealing plate on the top of the furnace body to ensure the sealing of the instrument during operation. For materials that need to be sintered in an inert gas or reducing gas environment (such as fluorescent materials, titanium alloys, etc.), this electric furnace is a very good choice.

Hydrogen atmosphere furnace detail 2

Hydrogen atmosphere furnace detail 3Hydrogen atmosphere furnace detail 3

Double-shell structure
Double-shell structure: It adopts a double-layer shell structure with air cooling and water cooling systems to maintain the positive pressure inside the cavity up to 0.02MP and the negative pressure up to -0.1MP.
Flowmeter
Flowmeter: The furnace body is equipped with two large-range flowmeters (N2:0~3.5L/minH2:0~3.5L/min). The float flowmeter can freely control the gas flow entering the furnace body.
Hydrogen safety device
Hydrogen safety device: The flame detector will automatically ignite. If ignition fails, the hydrogen gas inlet will be automatically cut off, the nitrogen gas inlet valve will be opened, and nitrogen gas will be forcibly charged to ensure the safety of the electric furnace.

Features

The Hydrogen Atmosphere Furnace is a specialized heating device designed to provide precise control over the environment during sintering or annealing processes. This furnace is particularly beneficial for materials that require processing in a hydrogen or inert gas environment, such as optical materials and titanium alloys. Here are the key features that enhance its functionality and safety:

  • Double-Shell Structure with Advanced Cooling Systems: The furnace features a double-layer shell design that incorporates both air and water cooling systems. This setup ensures a stable internal pressure ranging from 0.02MPa positive to -0.1MPa negative, maintaining optimal conditions for the materials being processed.
  • High Precision Flow Meters: Equipped with two large-range flow meters for nitrogen and hydrogen (each ranging from 0 to 3.5L/min), the furnace allows for precise control over the gas flow rates. This feature is crucial for maintaining the desired atmosphere composition and ensuring consistent results.
  • Comprehensive Hydrogen Safety Mechanism: Safety is paramount in environments involving hydrogen. The furnace includes a hydrogen safety device that automatically ignites hydrogen tail gas. In case of ignition failure, the system is designed to cut off the hydrogen supply, open the nitrogen valve, and force nitrogen into the furnace, thereby preventing any hazardous situations.
  • High Purity Molybdenum Heating Element: Utilizing a high purity molybdenum wire (99.99% molybdenum content), the heating element ensures uniform and efficient heating, which is essential for achieving high-quality sintering and annealing results.
  • Temperature Flexibility: With an adjustable working temperature range from 0 to 1600°C, this furnace accommodates a wide variety of materials and processes, making it a versatile tool in the laboratory or industrial setting.

Principle

Hydrogen atmosphere furnaces utilize a ceramic tube with leak-tight flanges to enable heat treatment up to 1600 °C in a hydrogen atmosphere. Prior to introducing hydrogen gas, the tube is flooded with inert gas for safety. The flooding tank system, pressurized with inert gas, purges remaining oxygen from the tube before heat treatment. The gas outlet system connects to an afterburner to combust outgoing hydrogen. Exothermic hydrogen atmospheres reduce surface oxides, improving the wetting properties and flow of filler material during brazing.

Advantages

Hydrogen Atmosphere Furnaces offer a range of benefits that make them a superior choice for high-temperature processes. Here are some of the key advantages:

  • Enhanced Oxygen Exclusion: The pressurized environment of the furnace ensures that oxygen cannot enter under any circumstances, providing a completely controlled atmosphere for sensitive processes.
  • Maximized Reductive Power: With more reactive hydrogen molecules available compared to partial pressure atmospheres, these furnaces maximize the reductive power, crucial for processes requiring a strong reducing environment.
  • Versatility with Hydrogen Mixtures: The ability to use mixtures of inert gases like nitrogen or argon with hydrogen offers a valuable alternative. These mixtures retain some of the reducing capabilities of pure hydrogen atmospheres while potentially reducing operating and investment costs.
  • Advanced Safety Features: Equipped with a fully automated flow controller and devices adhering to SIL2 standards, the system ensures safety and reliability. A hydrogen sensor at the top of the furnace immediately responds to any leaks, triggering a switch to inert gas and securing the system.
  • User-Friendly Interface: The intuitive touch panel interface simplifies operation and control, making it accessible for users of varying technical backgrounds.
  • Flexibility in Temperature and Space: These furnaces can be adapted to different usable spaces and temperatures, with options like cold wall furnaces available for requirements exceeding 1800 °C.
  • Sealing Efficiency: The inclusion of a high-temperature-resistant silica gel seal ring on the furnace door ensures excellent sealing, allowing for the creation of a vacuum and various other atmospheres, enhancing the versatility of the furnace.

Technical specifications

Furnace model KT-16AH
Max. temperature 1600℃
Constant work temperature 1500℃
Vacuum pressure 0.1Mpa
Vacuum valve Needle valve
Chamber material Japan alumina fiber
Heating element Molybdenum wire
Heating rate 0-20℃/min
Temperature sensor B type thermal couple
Temperature controller  Touch screen PID controller
Temperature control accuracy ±1℃
Temperature uniformity ±5℃
Electric power supply AC110-220V,50/60HZ
Standard Chamber Sizes Stocks
Chamber size  (mm) Effective volume  (L) Chamber size  (mm) Effective volume  (L)
150x150x200 4.5 300x300x400 36
200x200x300 12 400x400x400 64
Customer design sizes and volume is accepted
Standard Temperature controlling
  • PID automatic control via SCR (Silicon Controlled Rectifier) power control with phase angle fired, current limiting resistor.
  • 51 programmable segments for precise control of heating rate, cooling rate and dwell time.
  • Built in PID Auto-Tune function with overheating & broken Thermocouple broken protection.
  • Over temperature protection and alarm allows for operation without attendant
Optional of Temperature controlling
  • Software (Furnace can be operated by PC by installing a control software)
  • Touch screen temperature controller
Furnace structure Double layer steel casing with dual cooling fan, surface temperature below 60℃
Furnace door
  • Power cutting off when furnace door open
Warranty
  • For this hydrogen furnace, One year limited warranty with life time support. (Consumable parts such as heating elements and crucibles are not covered by the warranty, please order the replacement at related products)
  • ATTENTION: Any damages caused by the use of corrosive and acidic gases are not under the coverage of One Year Limited Warranty.
Hydrogen Furnace Using Attentions
  • Cooling rate shall also not exceed 10℃/min.
  • Toxic or explosive gases are not recommended for use with this furnace without necessary safety controls and supervision.
  • Small cracks may appear on the surface of the refractory ceramics over extended use. This is a normal occurrence and the cracks may be repaired with alumina coating.
  • Refractory door block must be inserted before closing door.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What is a vacuum furnace used for?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What is a atmospheric furnace?

An atmospheric furnace is a type of laboratory equipment that provides a controlled environment for various procedures. It is designed to maintain a specific temperature and atmosphere, which is essential for completing tasks that require precision and accuracy. The furnace is sealed tightly to ensure the proper environment, and the mixture of gases used is precisely measured to achieve the desired results. This type of furnace is commonly used for bonding, curing, and heat treating of samples that are prone to oxidation in an inert atmosphere.

What is the process of a vacuum furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What is the purpose of a vacuum hot press furnace?

The purpose of a vacuum hot press furnace is to combine vacuum or atmosphere, hot pressing, and high-temperature sintering to form new materials. It can be used in the vacuum sintering of transparent ceramics, industrial ceramics, and metals, as well as the high-temperature sintering of ceramic materials such as silicon carbide and silicon nitride. Additionally, it can be used for the heat treatment of powders and compacts at a temperature lower than the melting point of the main components, which improves their strength through metallurgical combination between particles. The finished materials have improved mechanical, electronic, and thermal properties.

How does a vacuum induction melting furnace work?

A vacuum induction melting furnace works by utilizing electromagnetic induction under vacuum or protective atmosphere conditions to melt metals and alloys that combine easily or have close affinity with oxygen, nitrogen, and hydrogen. The furnace contains a refractory-lined crucible enclosed by an induction coil that generates an eddy current of heat in the material being processed. The furnace's vacuum system totally eradicates gases from the molten metals, and the cooling system contributes to the controlled melting temperature. The furnace is highly reliable, gives high productivity, and produces metals with very close compositional tolerances.

What is vacuum arc melting process?

Vacuum arc melting (VAR) is a secondary melting process used to produce metal ingots with high chemical and mechanical homogeneity for critical applications in industries like aerospace, energy, and nuclear. The process involves refining liquid metal under vacuum and controlling its solidification rate. It is used for the purification of reactive titanium or zirconium alloys, without any contact with casting refractories, as well as for improving inclusion cleanliness in steels and superalloys. The remelted cylindrical ingots can weigh several tons, and VAR has revolutionized the specialty metallurgical techniques industry.

What is the use of atmosphere furnace?

An atmosphere furnace is used in laboratories to provide a controlled environment for various processes. The furnace allows for precise temperature and atmospheric control, which is critical for procedures that require exact temperatures. The furnace is sealed tightly to ensure the proper environment for the project. The atmosphere furnace's main component is the correct mixture of gases, which is essential to the success of the project. The atmosphere furnace plays a vital role in the success of the heat-treating process. It is used to protect the material being processed or to allow the surface of the material being processed to change.

What gas is used in a vacuum furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What are the advantages of a vacuum hot press furnace?

Advantages of a vacuum hot press furnace include hot pressing sintering of metal and ceramic powders, preparation of ceramic/metal composites and intermetallic compounds, research and development of diffusion welding process, and densification hot press sintering of oxygen/nitrogen/boron/carbon compounds and their mixtures. The high temperature and pressure under vacuum or atmosphere help to bond raw materials solid particles together, decrease voids and grain boundaries, and improve the mechanical, electronic, and thermal properties of finished materials.

What are the advantages of vacuum induction melting?

The advantages of vacuum induction melting (VIM) include the elimination of gases, superior process control, close control of chemical analysis, slag-free melting, and melt protection. VIM is currently the most energy-efficient, fastest, low-consumption, and environmentally friendly induction heating technology for heating metal materials. The technology offers exceptional and reproducible control of reactive element-containing compositions and eliminates the need for a protective slag cover, decreasing the potential for accidental contamination or inclusions in the ingot. The process takes place in a vacuum environment, making it beneficial to remove gas impurities inside the metal, resulting in a more pure metal alloy material.

What is VAR Vacuum Arc Remelting (VAR)Furnace?

VAR or Vacuum Arc Remelting is a process used to refine and improve the cleanliness of ingots made from standard air-melted, vacuum induction melted, or ESR remelted alloys. It is used for steels, superalloys, titanium, zirconium, and their alloys in industries such as aerospace, power generation, defense, medical, and nuclear. VAR is a continuous remelting process of a consumable electrode under vacuum, with DC power used to strike an arc between the electrode and a copper mold. The process removes dissolved gases, reduces undesired trace elements, improves oxide cleanliness, and achieves directional solidification of the ingot from bottom to top.

How does an atmosphere furnace work?

An atmosphere furnace works by heating materials or components in a controlled environment to achieve specific heat treatment or processing objectives. The furnace chamber is designed to accommodate the desired materials and can be sealed to maintain the selected atmosphere. The atmosphere is typically controlled by introducing specific gases or gas mixtures into the chamber, either continuously or intermittently, to create the desired environment. The furnace is equipped with heating elements, insulation, and temperature control systems to achieve and maintain the desired temperature. The materials or components are placed within the furnace chamber, and the furnace is heated to the desired temperature and held for the required duration to achieve the desired heat treatment or processing effect.

What is the heating element used in a vacuum furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

How does a vacuum hot press furnace work?

A vacuum hot press furnace is a piece of equipment that combines vacuum, hot pressing, and high-temperature sintering. It works by heating and pressurizing materials under vacuum or atmosphere to create a compact polycrystalline sintered body with improved mechanical, electronic, and thermal properties. The furnace is composed of several systems including furnace body, heating and heat preservation, temperature measurement system, vacuum system, air charging system, water cooling system, control system, and pressure system. Heating elements can be graphite heater, molybdenum heater, or induction heating, and one-way or two-way pressurization can be used for hydraulic pressurization.

How does vacuum help in induction melting furnace?

Vacuum conditions are critical in induction melting furnaces as they help to eliminate gases from the molten metals, preventing quick oxidation. The absence of gases during the melting process ensures the creation of very close compositional tolerances, resulting in consistent metals. The vacuum also provides a protective atmosphere for metals that combine easily or have a close affinity with oxygen, nitrogen and hydrogen. Vacuum induction melting furnaces use electromagnetic induction to melt metals and alloys in a refractory lined crucible enclosed by an induction coil, creating eddy currents that make the melting process possible.

How does vacuum arc melting furnace work?

A vacuum arc melting furnace works by melting materials under a vacuum or low-pressure atmosphere using electric arcs. The furnace uses two electrodes, one of which is the material to be melted. The electrodes are brought close together and an electric arc is struck between them, causing the material to melt. The furnace is then evacuated to remove any impurities and the molten material is cast into a desired shape. This process is used for the production of high-purity metals, alloys, and intermetallics used in industries such as aerospace, electronics, and biomedical engineering.

What are the advantages of using atmosphere furnaces?

Atmosphere furnaces offer several advantages for heat treatment and processing applications. The controlled atmosphere within the furnace allows for precise control over the material's surface chemistry and microstructure, resulting in improved mechanical properties or desired surface characteristics. The ability to create specific atmospheres, such as oxidizing, reducing, or inert, provides flexibility in achieving different heat treatment objectives. Atmosphere furnaces enable the processing of a wide range of materials, including metals, alloys, ceramics, and composites, allowing for diverse applications across various industries. The controlled environment within the furnace also helps prevent oxidation or decarburization of the materials during heating, ensuring consistent and reliable results. Additionally, atmosphere furnaces can be equipped with advanced temperature control and automation systems, enhancing process repeatability, efficiency, and productivity.

What are the common applications of vacuum hot press furnaces?

Vacuum hot press furnaces have various applications in industries such as aerospace, automotive, electronics, and materials research. They are used for the production of advanced ceramics, such as ceramic matrix composites and sintered carbides, which are used in high-temperature applications. These furnaces are also utilized for the fabrication of metallic alloys, superalloys, and intermetallic compounds with tailored properties. Vacuum hot press furnaces play a crucial role in the production of diamond tools and cutting inserts, as well as in the development of advanced electronic materials and components. Additionally, these furnaces are employed in research laboratories for the synthesis and processing of novel materials with unique properties.

What is vacuum induction melting furnace?

A vacuum induction melting furnace is a metallurgical furnace that uses an alternating electromagnetic field to melt and form various materials under vacuum or protective atmosphere. It is widely used in the vacuum metallurgy field and is essential for producing alloys and special steels used in the aerospace, electronics, and atomic energy industries. Vacuum induction melting furnaces are also used to improve the hot workability and mechanical properties of nickel, cobalt, and iron-based superalloys, as well as to melt stainless steel, heat-resistant steel, ultra-high strength steel, and various other materials to ensure their quality and performance.

What are the applications of vacuum arc melting furnaces?

Vacuum arc melting furnaces are commonly used in the production of high-performance materials, such as superalloys, special steels, and reactive metals. These materials often require high-purity and controlled composition, which can be achieved through vacuum arc melting. The process is particularly suited for the production of critical components in aerospace, automotive, and energy industries, where high strength, corrosion resistance, and temperature stability are vital. Vacuum arc melting is also used in research and development settings to produce small quantities of specialized alloys for testing and characterization purposes.

What factors should be considered when selecting an atmosphere furnace?

Several factors should be considered when selecting an atmosphere furnace. The desired temperature range and heating rate capability of the furnace should match the requirements of the heat treatment or processing application. The furnace size and capacity should be suitable for the size and quantity of materials or components to be processed. The control and monitoring features, such as temperature control accuracy, gas flow control, and data logging capabilities, should be evaluated to ensure precise and reliable operation. The compatibility of the furnace design with the desired atmosphere and gas handling requirements should also be taken into account. Other factors to consider include safety features, maintenance requirements, and cost. It is advisable to consult with furnace manufacturers or industry experts to select the most suitable atmosphere furnace for specific application needs.

What factors should be considered when selecting a vacuum hot press furnace?

When selecting a vacuum hot press furnace, several factors need to be considered. Firstly, the size and capacity of the furnace should align with the intended application and production requirements. The furnace should accommodate the size and number of samples or components to be processed. The heating and pressure capabilities of the furnace should also be evaluated to ensure they meet the desired temperature and pressure conditions. It is important to consider the level of automation and control systems available, as well as the compatibility with specific materials and processes. Additionally, the reliability, service support, and overall cost of ownership should be assessed. Consulting with manufacturers and experts in the field can help in selecting the most suitable vacuum hot press furnace for specific processing needs.

What are the advantages of using vacuum arc melting furnaces?

Vacuum arc melting furnaces offer several advantages. Firstly, the high vacuum environment prevents oxidation and contamination, resulting in high-purity melted metals. This is especially important for producing materials with stringent quality requirements. Secondly, the electric arc generates intense heat, allowing for rapid and efficient melting of the metal. The process can be precisely controlled to achieve specific melting parameters, such as temperature, pressure, and cooling rate, facilitating the production of alloys with desired properties. Vacuum arc melting furnaces also offer flexibility in terms of the size and shape of the melted metal, as the consumable electrode can be easily replaced or modified. Additionally, the process allows for the selective removal of impurities, such as gases and non-metallic inclusions, further enhancing the purity and quality of the final melted metal.

What safety precautions should be followed when using a vacuum arc melting furnace?

When using a vacuum arc melting furnace, several safety precautions should be followed to ensure safe operation. Firstly, the furnace should be operated by trained personnel who are familiar with the equipment, its operation, and safety protocols. Adequate personal protective equipment, such as heat-resistant gloves, safety goggles, and fire-resistant clothing, should be worn when handling hot materials or operating the furnace. The vacuum system should be regularly inspected and maintained to ensure proper functionality and prevent safety risks. It is important to follow the manufacturer's guidelines and instructions for safe operation and maintenance of the vacuum arc melting furnace. Additionally, proper handling and disposal of consumable electrodes and melted materials should be carried out according to established safety guidelines and regulations. Regular inspections and maintenance of the furnace, including electrical systems, cooling systems, and gas handling components, should be performed to ensure safe and reliable operation.
View more faqs for this product

4.8

out of

5

I'm very satisfied with this Hydrogen atmosphere furnace. It's a high-quality product with a reasonable price. The delivery was fast and the customer service was excellent.

Vickie Mcfarland

4.9

out of

5

This furnace is a lifesaver for our lab. It's easy to use and maintain, and it provides consistent results. We've been using it for over a year now and it's still going strong.

Curtis Hughes

4.7

out of

5

I highly recommend this Hydrogen atmosphere furnace. It's a great value for the money and it's made with high-quality materials. We've been using it for several months now and we've had no problems with it.

Sophia Mckinney

5.0

out of

5

This furnace is a game-changer for our lab. It's so easy to use and it produces consistent results. We've been using it for a few months now and we're very happy with it.

Jason Glover

4.6

out of

5

I'm really impressed with this Hydrogen atmosphere furnace. It's well-made and it works great. I've been using it for a few weeks now and I've had no problems with it.

Isabella Turner

4.9

out of

5

This furnace is a great addition to our lab. It's easy to use and it provides consistent results. We've been using it for a few months now and we're very happy with it.

Elijah King

5.0

out of

5

I'm so glad I bought this Hydrogen atmosphere furnace. It's made my work so much easier. It's easy to use and it produces consistent results. I highly recommend it.

Natalie Phillips

4.8

out of

5

This furnace is a great value for the money. It's well-made and it works great. I've been using it for a few months now and I've had no problems with it.

Lucas Martinez

4.7

out of

5

I'm very happy with this Hydrogen atmosphere furnace. It's a great product and it's made my work so much easier. I highly recommend it.

Mia Campbell

4.6

out of

5

This furnace is a great addition to our lab. It's easy to use and it provides consistent results. We've been using it for a few months now and we're very happy with it.

Benjamin Roberts

5.0

out of

5

I'm so glad I bought this Hydrogen atmosphere furnace. It's made my work so much easier. It's easy to use and it produces consistent results. I highly recommend it.

Amelia Harrison

PDF - Hydrogen atmosphere furnace

Download

Catalog of Atmosphere Furnace

Download

Catalog of Atmosphere Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

Catalog of Vacuum Induction Melting Furnace

Download

Catalog of Vacuum Arc Melting Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

1200℃ Controlled atmosphere furnace

1200℃ Controlled atmosphere furnace

Discover our KT-12A Pro Controlled atmosphere furnace - high precision, heavy duty vacuum chamber, versatile smart touch screen controller, and excellent temperature uniformity up to 1200C. Ideal for both laboratory and industrial application.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Mesh belt controlled atmosphere furnace

Mesh belt controlled atmosphere furnace

Discover our KT-MB mesh belt sintering furnace - perfect for high-temperature sintering of electronic components & glass insulators. Available for open air or controlled atmosphere environments.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

1700℃ Controlled atmosphere furnace

1700℃ Controlled atmosphere furnace

KT-17A Controlled atmosphere furnace: 1700℃ heating, vacuum sealing technology, PID temperature control, and versatile TFT smart touch screen controller for laboratory and industrial use.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Related Articles

Hydrogen Atmosphere Furnaces: Applications, Safety, and Maintenance

Hydrogen Atmosphere Furnaces: Applications, Safety, and Maintenance

Explore the comprehensive guide on hydrogen atmosphere furnaces, including their applications in high-end alloy sintering, safety measures, and maintenance tips. Learn about the types, components, and operational considerations for optimal performance.

Find out more
Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Explore the world of atmosphere furnaces with our detailed guide. Learn about their types, applications in metallurgy and beyond, and the benefits they offer for precise material heat treatment.

Find out more
Atmosphere Furnaces: Comprehensive Guide to Controlled Heat Treatment

Atmosphere Furnaces: Comprehensive Guide to Controlled Heat Treatment

Explore the advanced world of atmosphere furnaces with our detailed guide. Learn about their operation, applications, and benefits in various industries. Perfect for those seeking in-depth knowledge on controlled heat treatment.

Find out more
The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

They are essential in preventing oxidation, reducing the risk of contamination, and improving the properties of the materials being treated.

Find out more
Controlled Atmosphere Furnace: Comprehensive Guide to Advanced Heat Treatment

Controlled Atmosphere Furnace: Comprehensive Guide to Advanced Heat Treatment

Explore the advanced features and applications of controlled atmosphere furnaces in heat treatment processes. Learn about key components, operational techniques, and benefits for precise material processing.

Find out more
guide to UNIVERSAL TUBE FURNACES

guide to UNIVERSAL TUBE FURNACES

The maximum temperature in a tube furnace can vary depending on the specific model and the materials used in its construction. In general, tube furnaces are designed to operate at high temperatures, with some models capable of reaching temperatures as high as 2600°C.

Find out more
Introducing the Lab Vacuum Tube Furnaces

Introducing the Lab Vacuum Tube Furnaces

A vacuum tube furnace is a type of furnace that uses vacuum to isolate the process atmosphere from the external atmosphere.

Find out more
Comparing Laboratory Furnace Features and Specifications: A Guide

Comparing Laboratory Furnace Features and Specifications: A Guide

A laboratory furnace is a specialized heating equipment that is used in laboratories and research facilities to heat materials to high temperatures.

Find out more
Muffle Furnace: Unraveling the Secrets of Uniform Heating and Controlled Atmosphere

Muffle Furnace: Unraveling the Secrets of Uniform Heating and Controlled Atmosphere

Discover the intricacies of a muffle furnace, an indispensable tool for material processing and analysis. Learn about its working principle, applications, types, features, and benefits, empowering you to make informed decisions for your laboratory or industrial needs.

Find out more
How Controlled Atmosphere Furnaces Improve Quality and Consistency in Heat Treatment

How Controlled Atmosphere Furnaces Improve Quality and Consistency in Heat Treatment

Controlled atmosphere furnaces play a vital role in heat treatment processes.

Find out more
Exploring the Using a Chamber Furnace for Industrial and Laboratory Applications

Exploring the Using a Chamber Furnace for Industrial and Laboratory Applications

A laboratory chamber furnace is a type of heating equipment that is specifically designed for use in a laboratory setting. It is typically used for applications that require precise temperature control and uniformity, such as ashing or heat treatment of materials.

Find out more
Exploring the Key Characteristics of Tube Heating Furnaces

Exploring the Key Characteristics of Tube Heating Furnaces

A tube heating furnace is a specialized type of industrial furnace that is used in various industries to heat substances through the use of fuel combustion.

Find out more