Knowledge How thick is the plasma nitriding layer? (5 Key Factors Explained)
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

How thick is the plasma nitriding layer? (5 Key Factors Explained)

The thickness of the plasma nitriding layer can vary depending on various factors such as the type of material being treated, the nitriding temperature, and the treatment time.

How thick is the plasma nitriding layer? (5 Key Factors Explained)

How thick is the plasma nitriding layer? (5 Key Factors Explained)

1. Material Type

The type of material being treated significantly affects the thickness of the plasma nitriding layer.

2. Nitriding Temperature

The nitriding temperature plays a crucial role in determining the depth of the diffusion layer.

3. Treatment Time

For a given temperature, the case depth increases approximately as the square root of time. This indicates that the longer the treatment time, the deeper the nitriding layer can penetrate.

4. Plasma Power

The plasma power or current density is another process variable that can influence the thickness of the compound layer. The plasma power is a function of the surface area and can affect the formation and thickness of the compound layer.

5. Alternative Process: Plasma Nitrocarburizing

Plasma nitrocarburizing is an alternative to plasma nitriding for achieving particularly thick compound layers. The depth of the nitrocarburizing layer can vary depending on the material used, the treatment temperature, and the treatment time.

In summary, the thickness of the plasma nitriding layer can vary depending on factors such as the type of material, nitriding temperature, treatment time, and plasma power. However, based on the provided references, the thickness of the diffusion layer formed by plasma nitriding is approximately 80 µm.

Continue exploring, consult our experts

Upgrade your laboratory equipment with KINTEK for precise and efficient plasma nitriding. Achieve optimal case depth and compound layer thickness with our advanced technology. Contact us now to enhance your research capabilities and stay ahead in the field of materials science.

Related Products

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Titanium Nitride (TiN) Sputtering Target / Powder / Wire / Block / Granule

Titanium Nitride (TiN) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Titanium Nitride (TiN) materials for your lab? Our expertise lies in producing tailored materials of different shapes and sizes to meet your unique needs. We offer a wide range of specifications and sizes for sputtering targets, coatings, and more.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Carbon paper for batteries

Carbon paper for batteries

Thin proton exchange membrane with low resistivity; high proton conductivity; low hydrogen permeation current density; long life; suitable for electrolyte separators in hydrogen fuel cells and electrochemical sensors.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Thin-layer spectral electrolysis cell

Thin-layer spectral electrolysis cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.


Leave Your Message