Products Lab Consumables & Materials Thin Film Deposition Parts Boron Nitride (BN) Ceramic Plate
Boron Nitride (BN) Ceramic Plate

Thin Film Deposition Parts

Boron Nitride (BN) Ceramic Plate

Item Number : KM-D7

Price varies based on specs and customizations


Material
Boron nitride
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application   

Boron nitride (BN) ceramic sheets have excellent thermal insulation, electrical insulation properties and high thermal conductivity. They are high temperature resistant and can withstand rapid temperature changes without significant expansion or contraction. These sheets also have low friction and high lubricity properties, making them useful in applications requiring reduced friction and wear. They are chemically inert and do not react readily with most chemicals, acids or bases, making them highly stable in corrosive environments.

Based on the above characteristics, boron nitride sheets are very suitable for many industries, such as:

  • Suitable for high temperature protection, high temperature lubrication, high temperature demoulding, demoulding, anti-oxidation, metal
  • Solder resist coating, metal casting, forging, extrusion industries
  • Aluminum cladding and diversion channel protection, vacuum coating machine protective agent, electrical insulation coating, high temperature insulator thermocouple protection, high temperature roller protection, extrusion equipment protection, electrical insulator, glass
  • Hard texture, can be made into high-speed cutting tools and drill bits for geological exploration and oil drilling
  • Various shapes, can be used as high temperature, high pressure, insulation, heat dissipation components
  • Packaging materials for protection against neutron radiation
  • Special electrolytic and resistive materials that can be used at high temperatures

Detail & Parts

Boron nitride ceramic plate detail 1Boron nitride ceramic plate detail 2Boron nitride ceramic plate detail 3Boron nitride ceramic plate detail 4Boron nitride ceramic plate detail 5Boron nitride ceramic plate detail 6

The products we display are available in different sizes and custom sizes are available upon request.

Advantages

  • Low wettability to molten metal
  • Relatively high thermal conductivity and low thermal expansion
  • High thermal shock resistance; low dielectric constant
  • Ultra-high temperature resistance, excellent lubricating performance under high temperature conditions
  • Non-toxic, non-polluting, high environmental protection,
  • High chemical inertness, extremely low coefficient of friction
  • High voltage resistance, high resistance, thermal shock resistance, corrosion resistance

FAQ

What are the applications of Boron Nitride ceramic parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What are the advantages of using Boron Nitride ceramic parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

How are high-purity graphite crucibles made?

High-purity graphite crucibles are typically manufactured through a process called isostatic pressing. In this method, graphite powder is placed in a rubber mold, and then subjected to high pressure from all directions. This pressure compacts the graphite particles into a dense and uniform crucible shape. The crucible is then heated to a high temperature to remove any impurities and improve its purity.

What considerations should be made when selecting Boron Nitride ceramic parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What are the common applications of high-purity graphite crucibles?

High-purity graphite crucibles have a wide range of applications in industries such as metallurgy, foundries, and laboratories. They are commonly used for melting and casting non-ferrous metals, including aluminum, copper, and precious metals. High-purity graphite crucibles are also utilized in the production of alloys and high-temperature ceramics. They are essential in processes such as chemical analysis, spectroscopy, and sample preparation in laboratories. Additionally, these crucibles find applications in the semiconductor industry for the melting and growing of silicon and other semiconductor materials.

What manufacturing processes are used to produce Boron Nitride ceramic parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.

What factors should be considered when selecting high-purity graphite crucibles?

When selecting high-purity graphite crucibles, several factors should be considered. Firstly, the size and capacity of the crucible should align with the intended application and the amount of material to be melted or processed. The crucible's thermal conductivity, thermal shock resistance, and chemical compatibility should be evaluated to ensure they meet the specific process requirements. It is important to select crucibles made from high-quality graphite material with high purity levels to minimize contamination and ensure excellent performance. The crucible's design and construction should also be considered, such as the presence of handles or pouring spouts for easy handling. Additionally, it is advisable to consult with manufacturers or experts in the field to ensure the selection of the most suitable high-purity graphite crucibles for specific applications.
View more faqs for this product

4.7

out of

5

KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plate is an excellent choice for high-temperature applications. It's durable, has low wettability, and can withstand rapid temperature changes without cracking.

Abigale Akeredolu

4.9

out of

5

I've been using KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates for years, and they've never let me down. They're incredibly resistant to wear and tear, and they've helped me save a lot of money on maintenance costs.

Wajid Abbas

4.8

out of

5

The Boron Nitride (BN) Ceramic Plates I got from KINTEK SOLUTION are top-notch. They're incredibly strong and durable, and they've made a huge difference in the efficiency of our manufacturing process.

Klara Kristoffersen

4.7

out of

5

KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates are an absolute steal. They're incredibly affordable, and they perform just as well as the more expensive brands.

Alessandro Bruno

4.9

out of

5

I'm very impressed with the quality of KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates. They're made from the highest quality materials, and they're built to last.

Mustafa Kamal

4.8

out of

5

The Boron Nitride (BN) Ceramic Plates from KINTEK SOLUTION are a game-changer. They've helped us improve the quality of our products and reduce our manufacturing costs.

Petra Horvath

4.7

out of

5

I highly recommend KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates. They're the best on the market, and they're worth every penny.

Samuel Nii-Armah

4.9

out of

5

I'm so glad I switched to KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates. They're so much better than the ones I was using before.

Maria Rodriguez

4.8

out of

5

KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates are simply the best. They're durable, reliable, and affordable. What more could you ask for?

Ahmed Hassan

4.7

out of

5

I've been using KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates for a few months now, and I'm very impressed with their performance. They're definitely worth the investment.

Isabella Garcia

4.9

out of

5

KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates are a must-have for any lab. They're incredibly versatile and can be used for a variety of applications.

Oliver Chen

4.8

out of

5

I'm very happy with the Boron Nitride (BN) Ceramic Plates I got from KINTEK SOLUTION. They're exactly what I needed, and they arrived quickly.

Amina Patel

4.7

out of

5

KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates are a great value for the price. They're well-made and perform just as well as the more expensive brands.

Lucas Silva

4.9

out of

5

I highly recommend KINTEK SOLUTION's Boron Nitride (BN) Ceramic Plates. They're the best on the market, and they've made a huge difference in my lab.

Emma Jones

PDF - Boron Nitride (BN) Ceramic Plate

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Boron Nitride Ceramics

Download

Catalog of High Purity Graphite Crucible

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

High-purity titanium foil / titanium sheet

High-purity titanium foil / titanium sheet

Titanium is chemically stable, with a density of 4.51g/cm3, which is higher than aluminum and lower than steel, copper, and nickel, but its specific strength ranks first among metals.

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Shop Boron Nitride materials for your laboratory needs at reasonable prices. We tailor materials to your requirements with varying purities, shapes, and sizes. Choose from a wide range of specifications and sizes.

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal boron nitride (HBN) gaskets are made from hot-pressed boron nitride blanks. Mechanical properties similar to graphite, but with excellent electrical resistance.

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Phosphorus powder sintered boron nitride (BN) crucible has a smooth surface, dense, pollution-free and long service life.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Platinum Sheet Platinum Electrode

Platinum Sheet Platinum Electrode

Platinum sheet is composed of platinum, which is also one of the refractory metals. It is soft and can be forged, rolled and drawn into rod, wire, plate, tube and wire.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

PTFE tweezers

PTFE tweezers

PTFE tweezers inherit the excellent physical and chemical properties of PTFE, such as high temperature resistance, cold resistance, acid and alkali resistance, and corrosion resistance to most organic solvents.

High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

Elevate your experiments with our high-purity sheet metal. Gold, platinum, copper, iron, and more. Perfect for electrochemistry and other fields.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

Gold sheet electrode

Gold sheet electrode

Discover high-quality gold sheet electrodes for safe and durable electrochemical experiments. Choose from complete models or customize to meet your specific needs.

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

High Purity Boron (B) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Boron (B) materials tailored to your specific lab needs. Our products range from sputtering targets to 3D printing powders, cylinders, particles, and more. Contact us today.