Knowledge 4 Essential Methods for Determining Particle Size: A Comprehensive Guide
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

4 Essential Methods for Determining Particle Size: A Comprehensive Guide

Determining particle size is crucial for various industries, including pharmaceuticals, materials science, and environmental monitoring. Here are four essential methods to help you understand and measure particle size effectively.

1. Sieve Analysis: The Traditional Approach

4 Essential Methods for Determining Particle Size: A Comprehensive Guide

Sieve Analysis is a traditional method used to determine particle size distribution.

It involves passing a sample of solid particles through a series of sieves with progressively smaller mesh sizes.

The sample is shaken mechanically, allowing smaller particles to pass through the mesh while larger particles are retained on the sieve.

The amount of material that passes through each sieve is measured and recorded, which is then used to calculate the particle size distribution of the sample.

This method is particularly useful for particles ranging from 125 mm down to 20 μm.

2. Direct Image Analysis (SIA and DIA): Visual Precision

Direct Image Analysis involves the use of imaging technology to directly observe and analyze the particles.

Static Image Analysis (SIA) captures images of particles in a static state.

Dynamic Image Analysis (DIA) captures images of particles in motion.

These methods provide detailed visual data that can be used to determine particle size and shape.

They are particularly useful for particles that are difficult to analyze using traditional sieving methods.

3. Static Light Scattering (SLS) or Laser Diffraction (LD): Non-Invasive Accuracy

Static Light Scattering (SLS) or Laser Diffraction (LD) measures the scattering of light by particles in a dispersed medium.

A laser beam is passed through the sample, and the light that is scattered at different angles is detected.

The size of the particles can be determined from the intensity and pattern of the scattered light.

This method is non-invasive and can provide rapid and accurate results for a wide range of particle sizes.

4. Dynamic Light Scattering (DLS): Nanometer Precision

Dynamic Light Scattering (DLS), also known as Quasi-Elastic Light Scattering (QELS), measures the time-dependent fluctuations in the intensity of scattered light due to the Brownian motion of particles in suspension.

The diffusion coefficient of the particles can be determined from these fluctuations, which can then be used to calculate the particle size.

DLS is particularly useful for measuring the size of small particles, typically in the nanometer range.

Each of these methods has its own advantages and limitations, and the choice of method depends on the specific requirements of the analysis, including the size range of the particles, the nature of the sample, and the desired level of accuracy.

Continue exploring, consult our experts

Unlock the full potential of your particle analysis with KINTEK's advanced laboratory solutions. Whether you're sieving, imaging, scattering light, or measuring dynamic fluctuations, our cutting-edge instruments and expertise ensure precise and reliable results. Don't compromise on the quality of your research. Choose KINTEK for all your particle size determination needs. Contact us today to elevate your analytical capabilities and achieve unparalleled accuracy in your experiments.

Related Products

Mini Planetary Ball Mill

Mini Planetary Ball Mill

Discover the KT-P400 desktop planetary ball mill, ideal for grinding and mixing small samples in the lab. Enjoy stable performance, long service life, and practicality. Functions include timing and overload protection.

Vibration Sieve

Vibration Sieve

Efficiently process powders, granules, and small blocks with a high-frequency vibration sieve. Control vibration frequency, screen continuously or intermittently, and achieve accurate particle size determination, separation, and classification.

Four-body horizontal jar mill

Four-body horizontal jar mill

The four-body horizontal tank mill ball mill can be used with four horizontal ball mill tanks with a volume of 3000ml. It is mostly used for mixing and grinding laboratory samples.

Wet three-dimensional vibrating sieve

Wet three-dimensional vibrating sieve

The wet three-dimensional vibrating sieving instrument focuses on solving the sieving tasks of dry and wet samples in the laboratory. It is suitable for sieving 20g - 3kg dry, wet or liquid samples.

Two-dimensional vibrating sieve

Two-dimensional vibrating sieve

KT-VT150 is a desktop sample processing instrument for both sieving and grinding. Grinding and sieving can be used both dry and wet. The vibration amplitude is 5mm and the vibration frequency is 3000-3600 times/min.

Horizontal Planetary Ball Mill

Horizontal Planetary Ball Mill

Improve sample uniformity with our Horizontal Planetary Ball Mills. KT-P400H reduces sample deposition and KT-P400E has multi-directional capabilities. Safe, convenient and efficient with overload protection.

Vibration Mill

Vibration Mill

Vibration Mill for Efficient Sample Preparation, Suitable for Crushing and Grinding a Variety of Materials with Analytical Precision. Supports Dry / Wet / Cryogenic Grinding and Vacuum/Inert Gas Protection.

High energy planetary ball mill (Horizontal tank type)

High energy planetary ball mill (Horizontal tank type)

KT-P4000H uses the unique Y-axis planetary motion trajectory, and utilizes the collision, friction and gravity between the sample and the grinding ball to have a certain anti-sinking ability, which can obtain better grinding or mixing effects and further improve the sample output.

Dry three-dimensional vibrating sieve

Dry three-dimensional vibrating sieve

The KT-V200 product focuses on solving common sieving tasks in the laboratory. It is suitable for sieving 20g-3kg dry samples.

4 inch PTFE cavity fully automatic laboratory homogenizer

4 inch PTFE cavity fully automatic laboratory homogenizer

4 inch PTFE cavity fully automatic laboratory homogenizer is a versatile laboratory equipment designed for efficient and precise homogenization of small samples. It features a compact design, allowing for easy glove box operation and space optimization.

XRD sample holder / X-ray diffractometer powder slide

XRD sample holder / X-ray diffractometer powder slide

X-ray powder diffraction (XRD) is a rapid technique for identifying crystalline materials and determining their unit cell dimensions.

Dry and wet three-dimensional vibrating sieve

Dry and wet three-dimensional vibrating sieve

KT-VD200 can be used for sieving tasks of dry and wet samples in the laboratory. The screening quality is 20g-3kg. The product is designed with a unique mechanical structure and an electromagnetic vibrating body with a vibration frequency of 3000 times per minute.

XRD X-ray diffraction grinder

XRD X-ray diffraction grinder

KT-XRD180 is a miniature desktop multifunctional horizontal grinder specially developed for sample preparation of X-ray diffraction (XRD) analysis.

Slap vibrating sieve

Slap vibrating sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Disc / Cup Vibratory Mill

Disc / Cup Vibratory Mill

The vibrating disc mill is suitable for non-destructive crushing and fine grinding of samples with large particle sizes, and can quickly prepare samples with analytical fineness and purity.


Leave Your Message