Knowledge What is Sputter Coating for SEM? 5 Key Benefits Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is Sputter Coating for SEM? 5 Key Benefits Explained

Sputter coating for SEM involves applying an ultra-thin, electrically-conducting metal layer onto non-conductive or poorly conductive specimens.

This process helps prevent charging and enhances imaging quality.

It uses metals like gold, platinum, silver, or chromium, typically in thicknesses of 2–20 nm.

What is Sputter Coating for SEM? 5 Key Benefits Explained

What is Sputter Coating for SEM? 5 Key Benefits Explained

1. Application of Metal Coating

Sputter coating involves the deposition of a thin layer of metal onto a specimen.

This is crucial for specimens that are not electrically conductive.

Without this coating, they would accumulate static electric fields during scanning electron microscopy (SEM) analysis.

The metals commonly used for this purpose include gold, platinum, silver, chromium, and others.

These metals are chosen for their conductivity and ability to form stable, thin films.

2. Prevention of Charging

Non-conductive materials in an SEM can develop a charge due to the interaction with the electron beam.

This charge can distort the image and interfere with the analysis.

The conductive metal layer applied through sputter coating helps dissipate this charge.

This ensures a clear and accurate image.

3. Enhancement of Secondary Electron Emission

The metal coating also enhances the emission of secondary electrons from the specimen's surface.

These secondary electrons are crucial for imaging in SEM.

Their increased emission improves the signal-to-noise ratio.

This leads to clearer and more detailed images.

4. Benefits for SEM Samples

Reduced Microscope Beam Damage

The metal coating helps protect the specimen from the damaging effects of the electron beam.

Increased Thermal Conduction

The conductive layer aids in dissipating heat generated by the electron beam.

This protects the specimen from thermal damage.

Reduced Sample Charging

As mentioned, the conductive layer prevents the buildup of electrostatic charges.

Improved Secondary Electron Emission

This directly enhances the quality of SEM images.

Reduced Beam Penetration with Improved Edge Resolution

The thin metal layer reduces the depth of electron beam penetration.

This improves the resolution of edges and fine details in the image.

Protection for Beam-Sensitive Specimens

The coating acts as a shield for sensitive materials.

It prevents direct exposure to the electron beam.

5. Thickness of Sputtered Films

The thickness of the sputtered films typically ranges from 2 to 20 nm.

This range is chosen to balance the need for sufficient conductivity without significantly altering the surface topography or properties of the specimen.

Continue exploring, consult our experts

Experience the precision and excellence of KINTEK SOLUTION's sputter coating services for SEM applications.

Our advanced techniques and high-quality materials, including gold, platinum, silver, and chromium, ensure optimal performance and image clarity for your specimens.

Elevate your SEM analysis with our reliable solutions, designed to prevent charging, enhance secondary electron emission, and protect sensitive samples from damage.

Partner with KINTEK SOLUTION and unlock the full potential of your scanning electron microscopy studies.

Related Products

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

High Purity Selenium (Se) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Selenium (Se) materials for laboratory use? We specialize in producing and tailoring materials of various purities, shapes, and sizes to suit your unique requirements. Explore our range of sputtering targets, coating materials, powders, and more.

Zinc Selenide (ZnSe) Sputtering Target / Powder / Wire / Block / Granule

Zinc Selenide (ZnSe) Sputtering Target / Powder / Wire / Block / Granule

Looking for Zinc Selenide (ZnSe) materials for your laboratory? Our affordable prices and expertly tailored options make us the perfect choice. Explore our wide range of specifications and sizes today!

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Indium(II) Selenide (InSe) Sputtering Target / Powder / Wire / Block / Granule

Indium(II) Selenide (InSe) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Indium(II) Selenide materials for your lab at reasonable prices? Our tailored and customizable InSe products come in various purities, shapes, and sizes to suit your unique needs. Choose from a range of sputtering targets, coating materials, powders, and more.

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Tin Sulfide (SnS2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Tin Sulfide (SnS2) materials for your laboratory at affordable prices. Our experts produce and customize materials to meet your specific needs. Check out our range of sputtering targets, coating materials, powders, and more.

Cobalt Telluride (CoTe) Sputtering Target / Powder / Wire / Block / Granule

Cobalt Telluride (CoTe) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Cobalt Telluride materials for your laboratory needs at reasonable prices. We offer customized shapes, sizes, and purities, including sputtering targets, coatings, powders, and more.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

High Purity Cobalt (Co) Sputtering Target / Powder / Wire / Block / Granule

Get affordable Cobalt (Co) materials for laboratory use, tailored to your unique needs. Our range includes sputtering targets, powders, foils, and more. Contact us today for customized solutions!

Copper Zirconium Alloy (CuZr) Sputtering Target / Powder / Wire / Block / Granule

Copper Zirconium Alloy (CuZr) Sputtering Target / Powder / Wire / Block / Granule

Discover our range of Copper Zirconium Alloy materials at affordable prices, tailored to your unique requirements. Browse our selection of sputtering targets, coatings, powders, and more.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

High Purity Germanium (Ge) Sputtering Target / Powder / Wire / Block / Granule

High Purity Germanium (Ge) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality gold materials for your laboratory needs at affordable prices. Our custom-made gold materials come in various shapes, sizes, and purities to fit your unique requirements. Explore our range of sputtering targets, coating materials, foils, powders, and more.

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide is formed by synthesizing zinc vapor with H2Se gas, resulting in sheet-like deposits on graphite susceptors.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (BC) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide materials at reasonable prices for your lab needs. We customize BC materials of different purities, shapes, and sizes, including sputtering targets, coatings, powders, and more.

Molybdenum / Tungsten / Tantalum Evaporation Boat

Molybdenum / Tungsten / Tantalum Evaporation Boat

Evaporation boat sources are used in thermal evaporation systems and are suitable for depositing various metals, alloys and materials. Evaporation boat sources are available in different thicknesses of tungsten, tantalum and molybdenum to ensure compatibility with a variety of power sources. As a container, it is used for vacuum evaporation of materials. They can be used for thin film deposition of various materials, or designed to be compatible with techniques such as electron beam fabrication.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications


Leave Your Message