Knowledge What is the Fundamental of Magnetron Sputtering? (4 Key Points Explained)
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is the Fundamental of Magnetron Sputtering? (4 Key Points Explained)

Magnetron sputtering is a thin film deposition technique that uses a magnetic field to boost the efficiency of plasma generation near the target surface. This leads to higher deposition rates and better film quality.

4 Key Points Explained

What is the Fundamental of Magnetron Sputtering? (4 Key Points Explained)

1. Enhancement of Plasma Generation

In magnetron sputtering, a magnetic field is applied perpendicular to the electric field near the target surface. This magnetic field makes electrons follow a circular path, increasing their time in the plasma. As a result, the chance of electrons colliding with argon atoms (or other inert gases) is much higher. These collisions ionize the gas molecules, creating a dense plasma near the target.

2. Bombardment of Target Material

The ionized gas molecules (ions) are then pushed by the electric field towards the target material. When these ions hit the target, they transfer their energy, causing atoms or molecules from the target to be ejected. This process is called sputtering. The ejected material then forms a thin film on a substrate.

3. Advantages Over Other Techniques

Compared to other sputtering techniques like diode or DC sputtering, magnetron sputtering has several advantages. The plasma near the target is confined by the magnetic field, preventing damage to the thin film being formed on the substrate. Also, this technique works at lower temperatures, which is good for depositing films on temperature-sensitive substrates.

4. Application and Enhancement

Even though magnetron sputtering has many advantages, the ionization ratio of molecules can drop at low temperatures, limiting its use. To fix this, plasma-enhanced magnetron sputtering is used. This involves using more plasma to improve the coating's performance. This technology is widely used in industries for high-quality thin film deposition.

Continue exploring, consult our experts

Discover the precision and efficiency of thin film deposition with KINTEK SOLUTION's advanced Magnetron Sputtering systems. Elevate your material coating capabilities by harnessing the power of magnetic field-enhanced plasma generation for superior film quality and deposition rates. Explore our cutting-edge technology and take your thin film processing to new heights. Learn more about Magnetron Sputtering solutions from KINTEK SOLUTION today and unlock the potential for exceptional coatings in your industry.

Related Products

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

High Purity Iron (Fe) Sputtering Target / Powder / Wire / Block / Granule

High Purity Iron (Fe) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Iron (Fe) materials for laboratory use? Our range of products includes sputtering targets, coating materials, powders, and more in various specifications and sizes, tailored to meet your specific needs. Contact us today!

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

High Purity Magnesium (Mn) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Magnesium (Mn) materials for your lab needs? Our custom sizes, shapes, and purities have got you covered. Explore our diverse selection today!

Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Magnesium Fluoride (MgF2) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Magnesium Fluoride (MgF2) materials for your laboratory needs? Look no further! Our expertly tailored materials come in a range of purities, shapes, and sizes to meet your specific requirements. Shop now for sputtering targets, powders, ingots, and more.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.


Leave Your Message