Knowledge What is the yield of plastic pyrolysis? Unlock 40-75% Oil from Waste Plastic
Author avatar

Tech Team · Kintek Solution

Updated 1 day ago

What is the yield of plastic pyrolysis? Unlock 40-75% Oil from Waste Plastic

In short, the yield of liquid oil from plastic pyrolysis typically ranges from 40% to 75% by weight. The remaining products are a non-condensable synthetic gas (syngas), usually 10-30%, and a solid carbon residue, or char, at 5-20%. These figures are highly variable and not guaranteed.

The specific yield of any plastic pyrolysis system is not a fixed number. It is a dynamic outcome dictated by the type of plastic feedstock, the process temperature, and the reactor technology used. Understanding these variables is the key to assessing the true potential of the process.

Key Factors That Determine Pyrolysis Yield

Achieving a desirable yield is an exercise in chemical engineering control. The output is a direct consequence of the inputs and process conditions you select.

Feedstock Composition: The Starting Point

The type of plastic you put into the reactor is the single most important factor. Plastics are not all created equal.

Polyolefins (PE, PP, PS) like polyethylene, polypropylene, and polystyrene are ideal. They are simple hydrocarbon chains that break down cleanly into oil, gas, and char. These consistently produce the highest liquid oil yields.

Contaminant Plastics (PET, PVC) are highly problematic. Polyvinyl chloride (PVC) releases corrosive hydrochloric acid when heated, which can destroy equipment and contaminate the final oil. Polyethylene terephthalate (PET) yields very little oil, instead producing solid terephthalic acid and water, which lowers the overall process efficiency.

Process Temperature: The Primary Control Lever

Temperature directly controls how the long polymer chains break apart (a process called "cracking").

Moderate Temperatures (400–550°C) are the sweet spot for maximizing liquid oil. In this range, the polymer chains crack into medium-length hydrocarbon molecules that condense into a liquid oil at room temperature.

High Temperatures (>600°C) cause more aggressive secondary cracking. The medium-length oil molecules are broken down further into very short, light molecules. This dramatically increases the yield of non-condensable syngas at the expense of liquid oil.

Heating Rate and Residence Time: Fine-Tuning the Reaction

How quickly you heat the plastic and how long you keep it at temperature also shapes the output.

Fast Pyrolysis, characterized by a very high heating rate and short residence time (seconds), is designed to quickly vaporize the plastic and remove the vapors from the hot zone before they can over-react. This method maximizes the liquid oil yield.

Slow Pyrolysis, with a low heating rate and long residence time (minutes to hours), allows for secondary reactions to occur. This tends to increase the proportion of stable char and gas, reducing the final liquid yield.

The Role of Catalysts

Introducing a catalyst into the process can significantly alter the outcome. Catalysts, such as zeolites, can lower the required reaction temperature.

More importantly, they can selectively guide the cracking reactions to produce a higher-quality oil with a more desirable composition, such as hydrocarbons in the gasoline or diesel range. While this improves product value, it adds significant cost and complexity to the operation.

Understanding the Trade-offs

There is no "perfect" yield. Optimizing for one product often comes at the expense of another, and laboratory results rarely translate directly to industrial-scale economics.

The Oil-Gas-Char Balance

You cannot maximize all three outputs simultaneously. A process tuned for high oil yield will inherently produce a specific amount of gas and char. The non-condensable gas is not waste; it is typically captured and used as fuel to power the pyrolysis reactor, reducing external energy costs.

The Problem of Feedstock Purity

While pure polyolefin streams give the best results, real-world post-consumer plastic waste is heavily mixed and contaminated. The cost of sorting this waste to achieve a "clean" feedstock is a major economic hurdle. Running a mixed, un-sorted stream will result in lower oil yields, lower oil quality, and potential operational issues from materials like PVC and PET.

Economic Viability vs. Ideal Yield

The highest possible oil yield does not always equal the most profitable operation. A process with a slightly lower yield but significantly lower energy costs, no need for expensive catalysts, and the ability to handle less-pure feedstock may be far more economically viable in the long run.

Making the Right Choice for Your Goal

The "best" yield depends entirely on your objective. Use these guidelines to align the process with your desired outcome.

  • If your primary focus is maximizing liquid fuel (pyrolysis oil): Use pre-sorted polyolefin feedstock (PE, PP), and run the process at moderate temperatures (450-550°C) with a reactor designed for fast pyrolysis.
  • If your primary focus is producing valuable chemical feedstocks: Employ higher temperatures (>600°C) and catalysts to crack the polymers back into light olefins like ethylene and propylene for the chemical industry.
  • If your primary focus is waste volume reduction with energy recovery: A simpler, slow pyrolysis process can be effective, but plan to use the significant syngas output for process heat and be prepared to handle a lower-quality oil and a higher volume of char.

Ultimately, optimizing pyrolysis yield is a balancing act between feedstock purity, process control, and your specific economic or environmental objective.

Summary Table:

Factor Impact on Liquid Oil Yield Key Takeaway
Feedstock (Plastic Type) High (40-75%): Pure PE, PP, PS
Low (<20%): PVC, PET
Polyolefins are ideal; contaminants ruin yield and equipment.
Process Temperature Max Yield (450-550°C): Optimal for oil
High Yield (>600°C): Favors gas production
Temperature is the primary control for product distribution.
Heating Rate & Time Fast Pyrolysis: Maximizes oil
Slow Pyrolysis: Increases char and gas
Rapid heating and short vapor residence time boost oil output.
Use of Catalyst Can increase quality and target specific hydrocarbons. Adds cost and complexity but can improve product value.

Ready to optimize your plastic pyrolysis process for maximum yield and efficiency? The figures above are highly variable and depend on precise control of feedstock and reactor conditions. KINTEK specializes in providing robust lab equipment and consumables for pyrolysis research and development. Whether you are testing feedstock purity, optimizing temperature profiles, or scaling your process, our tools deliver the accuracy and reliability you need.

Contact us today at #ContactForm to discuss how our solutions can help you achieve your specific yield and product quality goals.

Related Products

People Also Ask

Related Products

Electric Rotary Kiln Small Rotary Furnace Biomass Pyrolysis Plant

Electric Rotary Kiln Small Rotary Furnace Biomass Pyrolysis Plant

Learn about Rotary Biomass Pyrolysis Furnaces & how they decompose organic material at high temps without oxygen. Use for biofuels, waste processing, chemicals & more.

Electric Rotary Kiln Pyrolysis Furnace Plant Machine Calciner Small Rotary Kiln Rotating Furnace

Electric Rotary Kiln Pyrolysis Furnace Plant Machine Calciner Small Rotary Kiln Rotating Furnace

Electric rotary kiln - precisely controlled, it's ideal for calcination and drying of materials like lithium cobalate, rare earths, and non-ferrous metals.

Vacuum Sealed Continuous Working Rotary Tube Furnace Rotating Tube Furnace

Vacuum Sealed Continuous Working Rotary Tube Furnace Rotating Tube Furnace

Experience efficient material processing with our vacuum-sealed rotary tube furnace. Perfect for experiments or industrial production, equipped with optional features for controlled feeding and optimized results. Order now.

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

This laboratory-scale high-pressure reactor is a high-performance autoclave engineered for precision and safety in demanding research and development environments.

Electric Rotary Kiln Continuous Working Small Rotary Furnace Heating Pyrolysis Plant

Electric Rotary Kiln Continuous Working Small Rotary Furnace Heating Pyrolysis Plant

Efficiently calcine and dry bulk powder and lump fluid materials with an electric heating rotary furnace. Ideal for processing lithium ion battery materials and more.

Mini SS High Pressure Autoclave Reactor for Laboratory Use

Mini SS High Pressure Autoclave Reactor for Laboratory Use

Mini SS High Pressure Reactor - Ideal for medicine, chemical, and scientific research industries. Programmed heating temp and stirring speed, up to 22Mpa pressure.

High Pressure Laboratory Autoclave Reactor for Hydrothermal Synthesis

High Pressure Laboratory Autoclave Reactor for Hydrothermal Synthesis

Discover the applications of Hydrothermal Synthesis Reactor - a small, corrosion-resistant reactor for chemical labs. Achieve rapid digestion of insoluble substances in a safe and reliable way. Learn more now.

Stainless High Pressure Autoclave Reactor Laboratory Pressure Reactor

Stainless High Pressure Autoclave Reactor Laboratory Pressure Reactor

Discover the versatility of Stainless High Pressure Reactor - a safe and reliable solution for direct and indirect heating. Built with stainless steel, it can withstand high temperatures and pressures. Learn more now.

Vacuum Hot Press Furnace Machine for Lamination and Heating

Vacuum Hot Press Furnace Machine for Lamination and Heating

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Quartz Electrolytic Electrochemical Cell for Electrochemical Experiments

Looking for a reliable quartz electrochemical cell? Our product boasts excellent corrosion resistance and complete specifications. With high-quality materials and good sealing, it's both safe and durable. Customize to meet your needs.

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Thin-Layer Spectral Electrolysis Electrochemical Cell

Thin-Layer Spectral Electrolysis Electrochemical Cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

Molybdenum Disilicide (MoSi2) Thermal Elements Electric Furnace Heating Element

Molybdenum Disilicide (MoSi2) Thermal Elements Electric Furnace Heating Element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Optical Water Bath Electrolytic Electrochemical Cell

Optical Water Bath Electrolytic Electrochemical Cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Electrolytic Electrochemical Cell Gas Diffusion Liquid Flow Reaction Cell

Looking for a high-quality gas diffusion electrolysis cell? Our liquid flow reaction cell boasts exceptional corrosion resistance and complete specifications, with customizable options available to suit your needs. Contact us today!

Double Layer Five-Port Water Bath Electrolytic Electrochemical Cell

Double Layer Five-Port Water Bath Electrolytic Electrochemical Cell

Experience optimal performance with our Water Bath Electrolytic Cell. Our double-layer, five-port design boasts corrosion resistance and longevity. Customizable to fit your specific needs. View specs now.

Double-Layer Water Bath Electrolytic Electrochemical Cell

Double-Layer Water Bath Electrolytic Electrochemical Cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

Silicon Carbide SiC Thermal Heating Elements for Electric Furnace

Silicon Carbide SiC Thermal Heating Elements for Electric Furnace

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!


Leave Your Message