Knowledge How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring

To control film thickness in evaporation, a real-time feedback system is used, centered around a device called a quartz crystal monitor. This monitor measures the rate of film growth as it happens and signals the evaporation source to shut off the instant the desired thickness is achieved, allowing for precision down to the nanometer scale.

The core principle is elegant: A quartz crystal vibrates at a specific frequency. As evaporated material coats the crystal, its mass increases, causing the vibration frequency to decrease. This change in frequency is precisely measured and converted into a film thickness measurement in real-time.

The Principle: How Mass Becomes a Measurement

The effectiveness of this technique relies on the unique properties of quartz crystal and a direct relationship between mass and frequency. Understanding this principle is key to trusting the process.

The Piezoelectric Effect

A quartz crystal is piezoelectric, meaning it physically deforms when a voltage is applied. By applying an alternating voltage, the crystal can be made to oscillate, or vibrate, at a very stable and predictable frequency.

Establishing a Resonant Frequency

Every quartz crystal monitor has a natural, stable resonant frequency. This frequency serves as the baseline—the "zero point"—before any material deposition begins.

The Impact of Added Mass

During evaporation, the stream of vaporized material coats everything inside the chamber, including the surface of the quartz crystal. This minuscule addition of mass makes the crystal heavier.

A heavier object vibrates more slowly than a lighter one. Therefore, as the film grows on the crystal, its resonant frequency begins to decrease in a highly predictable way.

From Frequency Shift to Thickness

The system continuously measures this drop in frequency. The change in frequency is directly proportional to the mass of the material that has been deposited onto the crystal's face.

Knowing the density of the material being evaporated, the system controller can instantly calculate the film's thickness from this mass measurement.

The Control Loop: From Measurement to Action

The measurement itself is only half the process. Its true power comes from how it's used to actively control the deposition.

Real-Time Process Monitoring

This frequency measurement is not a post-process check. It happens live, moment by moment, providing an instantaneous reading of the film's thickness and the rate at which it is growing.

The Feedback Mechanism

The output from the quartz crystal monitor is fed directly into the evaporation system's main controller. The user pre-sets a target thickness for the film.

Triggering the Shutdown

The controller constantly compares the real-time thickness measurement to the target thickness. The moment they match, it sends a signal to shut off the evaporation source (such as an electron beam or a thermal filament), immediately stopping the deposition.

Understanding the Limitations

While incredibly precise, the quartz crystal monitoring method has practical considerations that must be managed for accurate and repeatable results.

The "Tooling Factor"

The crystal monitor is located at a different position than your actual sample (substrate). Due to the geometry of the chamber, the amount of material deposited on the monitor may be slightly different than on the substrate.

A tooling factor is a calibration value used to correct for this geometric difference, ensuring the thickness on your sample is what you truly intend it to be.

Temperature Sensitivity

The resonant frequency of quartz is also sensitive to temperature. Significant temperature fluctuations during the deposition process can introduce errors in the thickness reading. Maintaining a stable process temperature is crucial for accuracy.

Crystal Saturation and Lifetime

The crystal is a consumable component. As more material is deposited over many runs, it becomes so heavy that its oscillation can become unstable or stop altogether. This is known as crystal failure, and the crystal must be replaced periodically to ensure reliable operation.

Making the Right Choice for Your Goal

By understanding these principles, you can move from simply using the equipment to intelligently controlling your deposition process for optimal outcomes.

  • If your primary focus is maximum accuracy: You must perform calibration runs to precisely determine the tooling factor for your specific material and chamber geometry.
  • If your primary focus is process repeatability: You must prioritize stabilizing all process parameters, especially chamber temperature and the physical placement of the monitor and substrates.
  • If your primary focus is reliable operation: You must implement a schedule for monitoring crystal life and replacing crystals proactively before they fail and ruin a deposition run.

Ultimately, mastering thickness control is about turning a physical principle into a precise and repeatable engineering process.

Summary Table:

Control Element Function Key Consideration
Quartz Crystal Monitor Measures mass deposition via frequency shift Requires periodic replacement due to saturation
Real-Time Feedback System Compares live thickness to target, shuts off source Needs stable temperature for accuracy
Tooling Factor Corrects for geometric differences between monitor and substrate Must be calibrated for specific chamber setups

Ready to Achieve Unmatched Precision in Your Thin-Film Deposition?

At KINTEK, we specialize in providing advanced laboratory equipment, including evaporation systems with sophisticated quartz crystal monitoring technology. Whether you're in research, semiconductor manufacturing, or materials science, our solutions ensure nanometer-scale accuracy and repeatable results for all your thin-film applications.

Let us help you optimize your process:

  • Precision Control: Achieve exact film thickness with real-time feedback systems.
  • Expert Support: Get tailored advice on tooling factor calibration and process stabilization.
  • Reliable Equipment: Access durable consumables and monitoring components designed for long-term performance.

Contact us today to discuss your specific lab equipment needs and discover how KINTEK can enhance your evaporation processes!

Related Products

People Also Ask

Related Products

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible BN Crucible

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

CVD Diamond Optical Windows for Lab Applications

CVD Diamond Optical Windows for Lab Applications

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

Ceramic Evaporation Boat Set Alumina Crucible for Laboratory Use

It can be used for vapor deposition of various metals and alloys. Most metals can be evaporated completely without loss. Evaporation baskets are reusable.1

Automatic Laboratory Heat Press Machine

Automatic Laboratory Heat Press Machine

Precision automatic heat press machines for labs—ideal for material testing, composites, and R&D. Customizable, safe, and efficient. Contact KINTEK today!

Vacuum Cold Trap Chiller Indirect Cold Trap Chiller

Vacuum Cold Trap Chiller Indirect Cold Trap Chiller

Boost vacuum system efficiency and prolong pump life with our Indirect Cold Trap. Built-in chilling system with no need for fluid or dry ice. Compact design and easy to use.

Platinum Auxiliary Electrode for Laboratory Use

Platinum Auxiliary Electrode for Laboratory Use

Optimize your electrochemical experiments with our Platinum Auxiliary Electrode. Our high-quality, customizable models are safe and durable. Upgrade today!

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Efficient Laboratory Disc Rotary Mixer for Precise Sample Mixing, Versatile for Various Applications, DC Motor and Microcomputer Control, Adjustable Speed and Angle.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Automatic Laboratory Hydraulic Press for XRF & KBR Pellet Press

Automatic Laboratory Hydraulic Press for XRF & KBR Pellet Press

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Vacuum Hot Press Furnace Machine for Lamination and Heating

Vacuum Hot Press Furnace Machine for Lamination and Heating

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Three-dimensional electromagnetic sieving instrument

Three-dimensional electromagnetic sieving instrument

KT-VT150 is a desktop sample processing instrument for both sieving and grinding. Grinding and sieving can be used both dry and wet. The vibration amplitude is 5mm and the vibration frequency is 3000-3600 times/min.

Custom PTFE Teflon Parts Manufacturer for PTFE Measuring Cylinder 10/50/100ml

Custom PTFE Teflon Parts Manufacturer for PTFE Measuring Cylinder 10/50/100ml

PTFE measuring cylinder are a rugged alternative to traditional glass cylinders. They are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance and maintain a low coefficient of friction, ensuring ease of use and cleaning.

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

The PTFE culture dish evaporating dish is a versatile laboratory tool known for its chemical resistance and high-temperature stability. PTFE, a fluoropolymer, offers exceptional non-stick properties and durability, making it ideal for various applications in research and industry, including filtration, pyrolysis, and membrane technology.


Leave Your Message