Knowledge How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring


To control film thickness in evaporation, a real-time feedback system is used, centered around a device called a quartz crystal monitor. This monitor measures the rate of film growth as it happens and signals the evaporation source to shut off the instant the desired thickness is achieved, allowing for precision down to the nanometer scale.

The core principle is elegant: A quartz crystal vibrates at a specific frequency. As evaporated material coats the crystal, its mass increases, causing the vibration frequency to decrease. This change in frequency is precisely measured and converted into a film thickness measurement in real-time.

How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring

The Principle: How Mass Becomes a Measurement

The effectiveness of this technique relies on the unique properties of quartz crystal and a direct relationship between mass and frequency. Understanding this principle is key to trusting the process.

The Piezoelectric Effect

A quartz crystal is piezoelectric, meaning it physically deforms when a voltage is applied. By applying an alternating voltage, the crystal can be made to oscillate, or vibrate, at a very stable and predictable frequency.

Establishing a Resonant Frequency

Every quartz crystal monitor has a natural, stable resonant frequency. This frequency serves as the baseline—the "zero point"—before any material deposition begins.

The Impact of Added Mass

During evaporation, the stream of vaporized material coats everything inside the chamber, including the surface of the quartz crystal. This minuscule addition of mass makes the crystal heavier.

A heavier object vibrates more slowly than a lighter one. Therefore, as the film grows on the crystal, its resonant frequency begins to decrease in a highly predictable way.

From Frequency Shift to Thickness

The system continuously measures this drop in frequency. The change in frequency is directly proportional to the mass of the material that has been deposited onto the crystal's face.

Knowing the density of the material being evaporated, the system controller can instantly calculate the film's thickness from this mass measurement.

The Control Loop: From Measurement to Action

The measurement itself is only half the process. Its true power comes from how it's used to actively control the deposition.

Real-Time Process Monitoring

This frequency measurement is not a post-process check. It happens live, moment by moment, providing an instantaneous reading of the film's thickness and the rate at which it is growing.

The Feedback Mechanism

The output from the quartz crystal monitor is fed directly into the evaporation system's main controller. The user pre-sets a target thickness for the film.

Triggering the Shutdown

The controller constantly compares the real-time thickness measurement to the target thickness. The moment they match, it sends a signal to shut off the evaporation source (such as an electron beam or a thermal filament), immediately stopping the deposition.

Understanding the Limitations

While incredibly precise, the quartz crystal monitoring method has practical considerations that must be managed for accurate and repeatable results.

The "Tooling Factor"

The crystal monitor is located at a different position than your actual sample (substrate). Due to the geometry of the chamber, the amount of material deposited on the monitor may be slightly different than on the substrate.

A tooling factor is a calibration value used to correct for this geometric difference, ensuring the thickness on your sample is what you truly intend it to be.

Temperature Sensitivity

The resonant frequency of quartz is also sensitive to temperature. Significant temperature fluctuations during the deposition process can introduce errors in the thickness reading. Maintaining a stable process temperature is crucial for accuracy.

Crystal Saturation and Lifetime

The crystal is a consumable component. As more material is deposited over many runs, it becomes so heavy that its oscillation can become unstable or stop altogether. This is known as crystal failure, and the crystal must be replaced periodically to ensure reliable operation.

Making the Right Choice for Your Goal

By understanding these principles, you can move from simply using the equipment to intelligently controlling your deposition process for optimal outcomes.

  • If your primary focus is maximum accuracy: You must perform calibration runs to precisely determine the tooling factor for your specific material and chamber geometry.
  • If your primary focus is process repeatability: You must prioritize stabilizing all process parameters, especially chamber temperature and the physical placement of the monitor and substrates.
  • If your primary focus is reliable operation: You must implement a schedule for monitoring crystal life and replacing crystals proactively before they fail and ruin a deposition run.

Ultimately, mastering thickness control is about turning a physical principle into a precise and repeatable engineering process.

Summary Table:

Control Element Function Key Consideration
Quartz Crystal Monitor Measures mass deposition via frequency shift Requires periodic replacement due to saturation
Real-Time Feedback System Compares live thickness to target, shuts off source Needs stable temperature for accuracy
Tooling Factor Corrects for geometric differences between monitor and substrate Must be calibrated for specific chamber setups

Ready to Achieve Unmatched Precision in Your Thin-Film Deposition?

At KINTEK, we specialize in providing advanced laboratory equipment, including evaporation systems with sophisticated quartz crystal monitoring technology. Whether you're in research, semiconductor manufacturing, or materials science, our solutions ensure nanometer-scale accuracy and repeatable results for all your thin-film applications.

Let us help you optimize your process:

  • Precision Control: Achieve exact film thickness with real-time feedback systems.
  • Expert Support: Get tailored advice on tooling factor calibration and process stabilization.
  • Reliable Equipment: Access durable consumables and monitoring components designed for long-term performance.

Contact us today to discuss your specific lab equipment needs and discover how KINTEK can enhance your evaporation processes!

Visual Guide

How is film thickness controlled in evaporation? Achieve Nanometer Precision with Quartz Crystal Monitoring Visual Guide

Related Products

People Also Ask

Related Products

Battery Lab Equipment Battery Capacity and Comprehensive Tester

Battery Lab Equipment Battery Capacity and Comprehensive Tester

The scope of application of the battery comprehensive tester can be tested: 18650 and other cylindrical, square lithium batteries, polymer batteries, nickel-cadmium batteries, nickel-metal hydride batteries, lead-acid batteries, etc.

Chemical Vapor Deposition CVD Equipment System Chamber Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

Chemical Vapor Deposition CVD Equipment System Chamber Slide PECVD Tube Furnace with Liquid Gasifier PECVD Machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

Molybdenum Tungsten Tantalum Evaporation Boat for High Temperature Applications

Molybdenum Tungsten Tantalum Evaporation Boat for High Temperature Applications

Evaporation boat sources are used in thermal evaporation systems and are suitable for depositing various metals, alloys and materials. Evaporation boat sources are available in different thicknesses of tungsten, tantalum and molybdenum to ensure compatibility with a variety of power sources. As a container, it is used for vacuum evaporation of materials. They can be used for thin film deposition of various materials, or designed to be compatible with techniques such as electron beam fabrication.

High Performance Laboratory Freeze Dryer for Research and Development

High Performance Laboratory Freeze Dryer for Research and Development

Advanced laboratory freeze dryer for lyophilization, preserving sensitive samples with precision. Ideal for biopharmaceuticals, research & food industries.

Multi Heating Zones CVD Tube Furnace Machine Chemical Vapor Deposition Chamber System Equipment

Multi Heating Zones CVD Tube Furnace Machine Chemical Vapor Deposition Chamber System Equipment

KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

VHP Sterilization Equipment Hydrogen Peroxide H2O2 Space Sterilizer

VHP Sterilization Equipment Hydrogen Peroxide H2O2 Space Sterilizer

A hydrogen peroxide space sterilizer is a device that uses vaporized hydrogen peroxide to decontaminate enclosed spaces. It kills microorganisms by damaging their cellular components and genetic material.

Rotating Platinum Disk Electrode for Electrochemical Applications

Rotating Platinum Disk Electrode for Electrochemical Applications

Upgrade your electrochemical experiments with our Platinum Disc Electrode. High-quality and reliable for accurate results.

Infrared High Resistance Single Crystal Silicon Lens

Infrared High Resistance Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Laboratory Small Constant Temperature Heated Magnetic Stirrer Heater and Stirrer

Laboratory Small Constant Temperature Heated Magnetic Stirrer Heater and Stirrer

The Laboratory Small Constant Temperature Heating Magnetic Stirrer is a versatile tool designed for precise temperature control and efficient mixing in various laboratory applications.

Molybdenum Tungsten Tantalum Special Shape Evaporation Boat

Molybdenum Tungsten Tantalum Special Shape Evaporation Boat

Tungsten Evaporation Boat is ideal for vacuum coating industry and sintering furnace or vacuum annealing. we offers tungsten evaporation boats that are designed to be durable and robust, with long operating lifetimes and to ensure consistent smooth and even spreading of the molten metals.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition RF PECVD

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition RF PECVD

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Platinum Auxiliary Electrode for Laboratory Use

Platinum Auxiliary Electrode for Laboratory Use

Optimize your electrochemical experiments with our Platinum Auxiliary Electrode. Our high-quality, customizable models are safe and durable. Upgrade today!

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

Custom PTFE Teflon Parts Manufacturer for Culture Dish and Evaporation Dish

The PTFE culture dish evaporating dish is a versatile laboratory tool known for its chemical resistance and high-temperature stability. PTFE, a fluoropolymer, offers exceptional non-stick properties and durability, making it ideal for various applications in research and industry, including filtration, pyrolysis, and membrane technology.


Leave Your Message