Knowledge What is the difference between plasma CVD and thermal CVD? (2 Key Differences Explained)
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

What is the difference between plasma CVD and thermal CVD? (2 Key Differences Explained)

When it comes to Chemical Vapor Deposition (CVD), there are two main types: plasma CVD and thermal CVD.

These methods differ significantly in how they initiate chemical reactions and the temperatures they require for the deposition process.

2 Key Differences Explained

What is the difference between plasma CVD and thermal CVD? (2 Key Differences Explained)

1. Mechanism of Chemical Reaction Initiation

Thermal CVD

In thermal CVD, the chemical reactions needed for thin film deposition are started by heat.

The substrate and reactant gases are heated to very high temperatures, usually around 1000°C.

This high heat helps break down the reactant gases and deposit the desired material onto the substrate.

Plasma CVD (PECVD)

Plasma CVD, specifically Plasma-Enhanced CVD (PECVD), uses plasma to start chemical reactions.

Plasma is created by applying an electric field, which excites the reactant gases and makes them react at much lower temperatures than thermal CVD.

This method involves ionizing the gases, which then react to form the desired film on the substrate.

2. Temperature Requirements for Deposition

Thermal CVD

Thermal CVD requires very high temperatures, typically around 1000°C.

These high temperatures are necessary to activate the chemical reactions.

However, this can limit the types of materials that can be deposited because some substrates or materials may be damaged or degraded at such high temperatures.

Plasma CVD (PECVD)

PECVD can operate at much lower temperatures, often between 300°C and 350°C.

This lower temperature requirement is important for depositing materials that are sensitive to high temperatures and for substrates that cannot withstand the high temperatures needed in thermal CVD.

Continue exploring, consult our experts

Experience cutting-edge thin film deposition with KINTEK SOLUTION's precision CVD systems.

Our innovative plasma CVD (PECVD) and thermal CVD technologies enable unmatched control over material properties and deposition temperatures, ensuring superior film quality for your most demanding applications.

Discover how our solutions can enhance your next project – contact us today and elevate your research to new heights with KINTEK SOLUTION's cutting-edge laboratory supplies!

Related Products

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Multi heating zones CVD tube furnace CVD machine

Multi heating zones CVD tube furnace CVD machine

KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.

Slide PECVD tube furnace with liquid gasifier PECVD machine

Slide PECVD tube furnace with liquid gasifier PECVD machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.


Leave Your Message