Knowledge Which ores undergo calcination?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

Which ores undergo calcination?

Calcination is a process used primarily on metal ores such as limestone (calcium carbonate), dolomite, and magnesite. This process involves heating the ore to a temperature below its melting point in the presence of limited air or oxygen, primarily to remove volatile impurities or to cause thermal decomposition.

Limestone (Calcium Carbonate): Calcination of limestone is one of the most common applications of this process. When limestone is heated, it decomposes into quicklime (calcium oxide) and carbon dioxide. This process is essential in the production of cement and for use in steelmaking and flue gas desulfurization. The rotary kiln is often used for this process, especially when dealing with finer particle sizes, as it provides a more uniform product at a higher rate.

Dolomite and Magnesite: Similar to limestone, dolomite and magnesite undergo calcination to remove impurities and to convert them into their respective oxides. The rotary kiln is also used for these processes, offering advantages such as handling a broad size range of charge material and operating at high calcination temperatures.

Other Applications: Calcination is not limited to these ores; it can also be used to remove bound moisture from materials like borax. The process can be carried out in various types of furnaces, including muffle, reverberatory, or shaft furnaces, and kilns, typically heated to temperatures between 800°C to 1300°C depending on the specific requirements of the material being processed.

In summary, calcination is a versatile pyrometallurgical process used extensively in the treatment of metal ores to refine them for various industrial applications. The key aspect of calcination is the controlled heating of the ore to facilitate chemical changes without melting the material.

Discover the precision and versatility of calcination solutions with KINTEK SOLUTION. From optimizing limestone calcination to refining dolomite and magnesite, our state-of-the-art technology ensures the highest quality outcomes for your industrial applications. Trust in our expertise and innovative kiln systems to elevate your pyrometallurgical processes and achieve superior results. Elevate your operations today with KINTEK SOLUTION – where every element is refined, every process is perfected.

Related Products

Electric rotary kiln pyrolysis furnace plant pyrolysis machine electric rotary calciner

Electric rotary kiln pyrolysis furnace plant pyrolysis machine electric rotary calciner

Electric rotary kiln - precisely controlled, it's ideal for calcination and drying of materials like lithium cobalate, rare earths, and non-ferrous metals.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Continuous working electric heating pyrolysis furnace plant

Continuous working electric heating pyrolysis furnace plant

Efficiently calcine and dry bulk powder and lump fluid materials with an electric heating rotary furnace. Ideal for processing lithium ion battery materials and more.

rotary biomass pyrolysis furnace plant

rotary biomass pyrolysis furnace plant

Learn about Rotary Biomass Pyrolysis Furnaces & how they decompose organic material at high temps without oxygen. Use for biofuels, waste processing, chemicals & more.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

laboratory vacuum tilt rotary tube furnace

laboratory vacuum tilt rotary tube furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

Vacuum sealed continuous working rotary tube furnace

Vacuum sealed continuous working rotary tube furnace

Experience efficient material processing with our vacuum-sealed rotary tube furnace. Perfect for experiments or industrial production, equipped with optional features for controlled feeding and optimized results. Order now.

Electric activated carbon regeneration furnace

Electric activated carbon regeneration furnace

Revitalize your activated carbon with KinTek's Electric Regeneration Furnace. Achieve efficient and cost-effective regeneration with our highly automated rotary kiln and intelligent thermal controller.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

High Purity Scandium Oxide (Sc2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Scandium Oxide (Sc2O3) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Scandium Oxide (Sc2O3) materials for laboratory use at reasonable prices. Our tailored solutions match different purities, shapes, and sizes to suit your requirements. Check out our range of sputtering targets, powders, foils, and more.

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Aluminum Oxide materials for your lab? We offer high-quality Al2O3 products at affordable prices with customizable shapes and sizes to meet your specific needs. Find sputtering targets, coating materials, powders, and more.

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Chromium Oxide (Cr2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Chromium Oxide materials for your lab? Our range includes sputtering targets, powders, foils, and more, customized to your needs. Shop now for reasonable prices.

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.


Leave Your Message