Knowledge Why do we use KBr in IR spectroscopy?
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

Why do we use KBr in IR spectroscopy?

We use KBr in IR spectroscopy primarily because it is transparent to infrared light, allowing for accurate and high-resolution measurements of sample spectra. KBr is commonly used to prepare samples in the form of pellets, which are ideal for IR analysis due to their minimal interference with the light path and their ability to be easily manipulated in the measurement setup.

Detailed Explanation:

  1. Transparency to Infrared Light: KBr is transparent to infrared radiation, which is crucial for IR spectroscopy. This transparency ensures that the infrared light can pass through the sample without significant absorption, allowing for clear detection of the sample's absorption characteristics. This property is essential for obtaining spectra with sharp peaks and good intensity.

  2. Sample Preparation: In IR spectroscopy, the sample is often mixed with KBr and compressed into a pellet. This method is preferred because it allows for the inclusion of just the right amount of sample (typically 1% by weight) to be analyzed without blocking the infrared light path. The pellet formation process exploits the plasticity of alkali halides like KBr when subjected to pressure, forming a transparent sheet suitable for spectroscopic analysis.

  3. Background Measurement and Calibration: Before measuring the sample, a background measurement is performed using pure KBr. This step is crucial for calibrating the system and ensuring that any signals observed are due to the sample and not the matrix. The sample is then mixed with KBr (diluted to 0.1% to 10%) and packed into the sample plate for measurement. This technique allows for the analysis of very small sample volumes, as little as 50 to 100 ng.

  4. Handling of Moisture: KBr is hygroscopic, meaning it can absorb moisture from the air. This property can affect the accuracy of IR measurements if not properly managed. To mitigate this, sample preparation and pressing are often conducted in controlled environments such as gloveboxes or under vacuum conditions to prevent moisture absorption.

  5. Comparison with Transmission Spectra: The diffuse reflectance method used with KBr pellets involves repeated transmission of light through the sample, which can emphasize low absorption bands. To compare these spectra with traditional transmission spectra, a Kubelka-Munk transformation is applied, ensuring accurate and quantitative analysis.

In summary, KBr is used in IR spectroscopy because of its transparency to infrared light, its utility in sample preparation, and its compatibility with various spectroscopic techniques and environments. These properties make KBr an essential component in obtaining high-quality IR spectra for a wide range of samples.

Discover the precision and quality of your infrared analysis with KINTEK SOLUTION's premium KBr. Our KBr offers unparalleled transparency for IR spectroscopy, enabling clear, high-resolution measurements. Trust in our comprehensive range of KBr products, designed for easy sample preparation, accurate background measurements, and moisture-resistant handling. Elevate your research with KINTEK SOLUTION – your partner in achieving top-tier spectroscopic results.

Related Products

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Potassium Fluoride (KF) Sputtering Target / Powder / Wire / Block / Granule

Get top-quality Potassium Fluoride (KF) materials for your lab needs at great prices. Our tailored purities, shapes, and sizes suit your unique requirements. Find sputtering targets, coating materials, and more.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

kbr pellet press 2T

kbr pellet press 2T

Introducing the KINTEK KBR Press - a handheld laboratory hydraulic press designed for entry-level users.

XRD sample holder / X-ray diffractometer powder slide

XRD sample holder / X-ray diffractometer powder slide

X-ray powder diffraction (XRD) is a rapid technique for identifying crystalline materials and determining their unit cell dimensions.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

XRD X-ray diffraction grinder

XRD X-ray diffraction grinder

KT-XRD180 is a miniature desktop multifunctional horizontal grinder specially developed for sample preparation of X-ray diffraction (XRD) analysis.

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide is formed by synthesizing zinc vapor with H2Se gas, resulting in sheet-like deposits on graphite susceptors.

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Phosphorus powder sintered boron nitride (BN) crucible has a smooth surface, dense, pollution-free and long service life.

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.


Leave Your Message