Knowledge Why is diamond used for making or coating tool? Unlock Unmatched Hardness and Precision
Author avatar

Tech Team · Kintek Solution

Updated 2 days ago

Why is diamond used for making or coating tool? Unlock Unmatched Hardness and Precision

At its core, diamond is used for cutting tools for one primary reason: it is the hardest known material on Earth. This extreme hardness translates directly into superior wear resistance, allowing a diamond-tipped tool to maintain a sharp cutting edge far longer than any other material, especially when machining highly abrasive or hard substances.

The choice to use diamond tooling is a strategic decision to achieve maximum performance and tool life when working with non-ferrous metals, composites, and ceramics. However, its chemical reactivity with iron makes it fundamentally unsuitable for machining steel and other ferrous alloys.

The Core Properties of Diamond Tools

To understand why diamond is so effective, we must look beyond its famous hardness and consider its other unique thermal and physical properties.

Unmatched Hardness and Wear Resistance

The defining characteristic of diamond is its rating of 10 on the Mohs hardness scale. In a manufacturing context, this means a diamond cutting edge can shear through difficult materials with minimal degradation.

This results in exceptionally long tool life and consistent part quality over extended production runs, as the tool's geometry does not change due to wear.

Superior Thermal Conductivity

Diamond is an exceptional thermal conductor, far better than copper or silver. During high-speed machining, immense heat is generated at the cutting point.

A diamond tool acts like a highly efficient heat sink, rapidly pulling this thermal energy away from the workpiece and the tool tip. This prevents heat damage to the workpiece and protects the tool itself from thermal failure.

Low Coefficient of Friction

Diamond has a very low coefficient of friction, meaning it glides through the material being cut with less resistance.

This has two key benefits: it reduces the cutting forces required, putting less stress on the machine, and it helps produce a superior surface finish on the final part by minimizing material tearing.

Types of Industrial Diamond Tooling

"Diamond tooling" is not a single category. The type of diamond used is engineered for specific applications and cost considerations.

Polycrystalline Diamond (PCD)

PCD is the most common form of industrial diamond. It consists of microscopic diamond crystals sintered together with a metallic binder under extreme pressure and temperature.

This creates a tough, wear-resistant layer that is ideal for machining non-ferrous metals (like aluminum alloys), composites (like carbon fiber), and wood products. It offers a great balance of performance and durability.

Monocrystalline Diamond (MCD)

MCD, also known as single-crystal diamond, is a flawless, lab-grown diamond. It can be honed to an incredibly sharp and perfect cutting edge, measured in nanometers.

Its sole purpose is ultra-precision machining to create mirror-like finishes on materials like plastics, aluminum, and copper, often for optical components. MCD is more brittle and expensive than PCD.

Diamond-Coated Tools

For a more cost-effective solution, a thin layer of diamond can be deposited onto a tougher tool substrate (like tungsten carbide) using Chemical Vapor Deposition (CVD).

This provides the hardness and low friction of a diamond surface while retaining the toughness and lower cost of the carbide body. However, the coating is thin and can be stripped away under aggressive use.

Understanding the Critical Trade-offs

Despite its advantages, diamond is not a universal solution. Its limitations are just as important to understand as its strengths.

Chemical Reactivity with Ferrous Metals

This is the most significant limitation. At the high temperatures generated when cutting steel or cast iron, a chemical reaction occurs where the carbon atoms in the diamond diffuse into the iron.

This process, known as graphitization, rapidly breaks down the diamond's structure, causing catastrophic and immediate tool failure. For this reason, diamond tools are never used to machine ferrous metals.

Brittleness and Shock Sensitivity

While incredibly hard, diamond is also brittle. It has low fracture toughness, meaning it can easily chip or shatter if subjected to sudden impacts, shock loads, or heavy vibrations.

This makes it unsuitable for "interrupted cuts" where the tool repeatedly enters and exits the material, as each impact poses a risk of fracture.

High Initial Cost

Diamond tooling carries a significantly higher upfront cost compared to carbide or high-speed steel tools. This cost must be justified by the application.

The investment is typically recouped through much longer tool life, faster cutting speeds, and reduced machine downtime for tool changes, leading to a lower overall cost-per-part in high-volume production.

Making the Right Choice for Your Application

Selecting the right cutting tool material is essential for efficiency, quality, and cost-effectiveness.

  • If your primary focus is machining aluminum, brass, or composites: PCD is the industry standard, offering unmatched tool life and high-speed capability.
  • If your primary focus is achieving a mirror-like surface finish: MCD is the only choice for creating ultra-precise optical surfaces on non-ferrous materials.
  • If your primary focus is machining steel, stainless steel, or cast iron: Do not use diamond. Use appropriate grades of carbide, ceramic, or cubic boron nitride (CBN) tools instead.
  • If your primary focus is a cost-sensitive application on abrasive non-metals: Diamond-coated carbide tools can provide a significant performance boost over standard carbide.

Ultimately, using a diamond tool is a strategic investment in performance for a specific set of demanding materials.

Summary Table:

Property Benefit for Tooling
Extreme Hardness Superior wear resistance & long tool life
High Thermal Conductivity Rapid heat dissipation protects workpiece & tool
Low Coefficient of Friction Reduced cutting forces & superior surface finish
Types Best For
PCD (Polycrystalline Diamond) Machining aluminum, composites, wood
MCD (Monocrystalline Diamond) Ultra-precision, mirror-like finishes
Diamond-Coated Tools Cost-effective performance on abrasive non-metals

Ready to enhance your machining performance with the right diamond tooling?

KINTEK specializes in high-performance lab equipment and consumables, including precision tooling solutions. Whether you're machining advanced composites, non-ferrous metals, or require ultra-precise finishes, our expertise can help you select the ideal tool to maximize efficiency, tool life, and part quality.

Contact our experts today to discuss your specific application and discover how KINTEK's solutions can drive your productivity forward.

Related Products

People Also Ask

Related Products

CVD Diamond Cutting Tool Blanks for Precision Machining

CVD Diamond Cutting Tool Blanks for Precision Machining

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

CVD Diamond Domes for Industrial and Scientific Applications

CVD Diamond Domes for Industrial and Scientific Applications

Discover CVD diamond domes, the ultimate solution for high-performance loudspeakers. Made with DC Arc Plasma Jet technology, these domes deliver exceptional sound quality, durability, and power handling.

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Laboratory CVD Boron Doped Diamond Materials

Laboratory CVD Boron Doped Diamond Materials

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

CVD Diamond Optical Windows for Lab Applications

CVD Diamond Optical Windows for Lab Applications

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

Precision Wire Saw Laboratory Cutting Machine with 800mm x 800mm Workbench for Diamond Single Wire Circular Small Cutting

Precision Wire Saw Laboratory Cutting Machine with 800mm x 800mm Workbench for Diamond Single Wire Circular Small Cutting

Diamond wire cutting machines are mainly used for precision cutting of ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, biomedical materials and other material analysis samples. Especially suitable for precision cutting of ultra-thin plates with thickness up to 0.2mm.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Automatic Lab Cold Isostatic Press CIP Machine Cold Isostatic Pressing

Automatic Lab Cold Isostatic Press CIP Machine Cold Isostatic Pressing

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Laboratory Disc Rotary Mixer for Efficient Sample Mixing and Homogenization

Efficient Laboratory Disc Rotary Mixer for Precise Sample Mixing, Versatile for Various Applications, DC Motor and Microcomputer Control, Adjustable Speed and Angle.

Electrolytic Electrochemical Cell for Coating Evaluation

Electrolytic Electrochemical Cell for Coating Evaluation

Looking for corrosion-resistant coating evaluation electrolytic cells for electrochemical experiments? Our cells boast complete specifications, good sealing, high-quality materials, safety, and durability. Plus, they're easily customizable to meet your needs.

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

Laboratory Vibratory Sieve Shaker Machine Slap Vibrating Sieve

KT-T200TAP is a slapping and oscillating sieving instrument for laboratory desktop use, with 300 rpm horizontal circular motion and 300 vertical slapping motions to simulate manual sieving to help sample particles pass through better.

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

This laboratory-scale high-pressure reactor is a high-performance autoclave engineered for precision and safety in demanding research and development environments.

Vacuum Hot Press Furnace Machine for Lamination and Heating

Vacuum Hot Press Furnace Machine for Lamination and Heating

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Metallographic Specimen Mounting Machine for Laboratory Materials and Analysis

Precision metallographic mounting machines for labs—automated, versatile, and efficient. Ideal for sample prep in research and quality control. Contact KINTEK today!


Leave Your Message