Thematics Rotary Tube Furnace

rotary tube furnace

A Rotary Tube Furnace is a circular furnace that rotates during heat treatment. It is used in a wide range of industries and is designed to heat loose materials for physiochemical processing. These furnaces feature a metal drum lined with refractory and are classified depending on their method of heat exchange and energy transfer method. Rotary Tube Furnaces can be made of ceramic, quartz, or a high-temperature alloy and can be built with a wide temperature range. They are suitable for manufacturing materials such as alumina, vermiculite, iron ore pellets, and cement clinker, as well as for oxidation and calcination processes.


We have the best Rotary Tube Furnace solutions for a wide range of applications. Our furnaces are designed to withstand high temperatures and offer complete process control, resulting in high-quality products. With customized rotation speeds and gradients, fully programmable operation, and options for processing in air, oxygen, and inert atmospheres, you can trust that our Rotary Tube Furnaces will exceed your expectations. At KINTEK, we offer a bespoke design service that allows us to meet almost any customer requirement.

Applications of Rotary Tube Furnace

  • Manufacturing of materials such as alumina and iron ore pellets.
  • Calcination of materials that require continuous throughput and loose materials.
  • Oxidation of materials.
  • Powder processing to minimize material handling.
  • Drying of materials.
  • Calcination of materials while maintaining their individual grain characteristics.
  • Heat treatment of materials to improve their properties.
  • Sintering of materials to form a solid mass from a powdery substance.
  • Annealing of materials to reduce their hardness and increase their ductility.
  • Reduction of metal oxides to produce metals.

Rotary tube furnaces offer complete process control resulting in high-quality products. They can withstand high temperatures and provide efficient heat transfer over a short time. Rotary tube furnaces can be customized to suit individual requirements, such as temperature control, work-space size, residence time, tube rotation rate, tube inclination angle, temperature profile, atmosphere flow rate, powder bed depth, and feed rate.

Advantages of Rotary Tube Furnace

  • Improved gas diffusion and reduced gas consumption
  • Increased heat treatment efficiency
  • Consistent temperature profile for improved product homogeneity
  • Efficient way to transfer heat over a short time and continuously run batches of materials
  • Minimizes material handling, especially in powder processing
  • Custom designed to fit specific requirements such as temperature control, workspace size, residence time, tube rotation rate, tube inclination angle, temperature profile, atmosphere flow rate, powder bed depth, and feed rate
  • Versatile tool for a wide range of physicochemical processing applications in the laboratory
  • Allows materials to be heated and mixed simultaneously in a controlled atmosphere
  • Equipped with additional features such as feeders and inert gas packages to optimize processing conditions
  • Adjustable rotation speed, tilt, and heating zones for fine-tuning furnace performance
  • Suitable for applications in research and development, including material science, geology, gaseous reduction of ores, synthesis of catalysts and pigments, calcination of oil shale, and doping ceramics with rare earth metals
  • Provides excellent temperature uniformity for high-quality and consistent materials processing.

Our Rotary Tube Furnace is an excellent solution for manufacturing various materials and applications such as calcining and oxidation. With sustained operating temperatures up to 1700°C, it is heated with silicon carbide or molydisilicide heating elements, providing complete process control and high-quality products. Our furnace has a fully programmable operation with a fully integrated control panel, customized rotation speeds, and gradients. It can process in air, oxygen, and inert atmospheres. Additionally, we offer custom design services for specific requirements, which makes our furnace both advantageous in terms of price and customizable.

FAQ

What Is A Rotary Tube Furnace?

A rotary tube furnace is a circular furnace that rotates during heat-treatment. It is designed to heat loose materials for physiochemical processing and is used for continuous materials processing. These furnaces feature a metal drum lined with refractory, which is mounted at an angle and can burn pulverized, solid, gaseous or liquid fuel into its working section. Rotary tube furnaces have a wide range of applications, including the manufacturing of materials such as alumina, vermiculite, iron ore pellets and cement clinker, as well as for oxidation and calcination processes.

How Does A Rotary Tube Furnace Work?

A rotary tube furnace is a circular furnace that rotates during heat-treatment. It burns fuel and the heating gases created flow towards the sample. The furnace features a metal drum lined with refractory, mounted at an angle. Loose materials are heated for physiochemical processing and the heat is transferred from a heat source to a rotating tube which holds the sample. Rotary tube furnaces are designed for continuous materials processing and have multiple thermal control zones. They have a wide range of applications, including the manufacture of alumina, vermiculite, iron ore pellets, and cement clinker.

What Are The Advantages Of A Rotary Tube Furnace?

The advantages of a rotary tube furnace include improved gas diffusion, reduced gas consumption, increased heat treatment efficiency, and improved product homogeneity. These furnaces provide an efficient way to transfer heat over a short time and continuously run batches of materials. Rotary tube furnaces can be custom designed for specific requirements, including temperature control, workspace size, residence time, tube rotation rate, and atmosphere flow rate. When choosing a tube for a rotary tube furnace, key points to consider include rotational speed, amount of material, tube diameter, suspended length, and tube thickness.

What Is The Function Of Rotary Tube Furnace?

The function of a rotary tube furnace is to heat loose materials for physiochemical processing. The furnace features a rotating tube that holds the sample and applies heat in multiple thermal control zones. Heating gases created by burning fuel flow towards the sample through the furnace. Rotary tube furnaces are used for manufacturing materials such as alumina, vermiculite, iron ore pellets, and cement clinker, as well as for oxidation and calcination processes. These furnaces can be made of ceramic, quartz, or high-temperature alloy and can be built with a wide temperature range for various applications.

What Are The Advantages Of Rotary Tube Furnace?

Rotary tube furnaces offer efficient heat transfer over a short period, continuously processing batches of material while minimizing material handling. The furnace's continuous movement exposes the entire sample surface to the atmosphere, improving gas diffusion and reducing gas consumption to increase heat treatment efficiency.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Choosing the Right Chamber Muffle Furnace Size

Choosing the Right Chamber Muffle Furnace Size

Guidelines for selecting the appropriate chamber size for a muffle furnace based on sample size, number of samples, process needs, and more.

Read more
Major Equipment in a Dental Laboratory

Major Equipment in a Dental Laboratory

Overview of essential dental lab equipment including casting, porcelain, polishing, and more.

Read more
Understanding the Vacuum Sintering Furnace: Components and Functions

Understanding the Vacuum Sintering Furnace: Components and Functions

An in-depth look at the key components of a vacuum sintering furnace and their roles in material sintering.

Read more
Common Issues and Solutions in Dental Furnace Sintered Denture Procedures

Common Issues and Solutions in Dental Furnace Sintered Denture Procedures

This article discusses common problems encountered during dental furnace sintered denture procedures and provides solutions.

Read more
How to Choose a Laboratory Tube Furnace

How to Choose a Laboratory Tube Furnace

Guide on selecting a laboratory tube furnace based on temperature, sample size, temperature zones, and functions.

Read more
Understanding the Temperature Zones in Tube Furnaces

Understanding the Temperature Zones in Tube Furnaces

Explores the roles and impacts of different temperature zones in tube furnaces, focusing on constant temperature zones and their selection criteria.

Read more
Vacuum Tube Furnace Sintering Gas Operation Procedure

Vacuum Tube Furnace Sintering Gas Operation Procedure

Detailed steps for operating a vacuum tube furnace using a sintering gas.

Read more
Quenching Methods in Vacuum Tube Furnaces

Quenching Methods in Vacuum Tube Furnaces

An overview of various quenching methods used in vacuum tube furnaces for optimal heating and cooling processes.

Read more
Atmosphere Oven Use, Precautions, and Cleaning Steps

Atmosphere Oven Use, Precautions, and Cleaning Steps

Detailed guide on using, precautions, and cleaning steps for an atmosphere oven.

Read more
Working Principle and Structure of Atmosphere Rotary Oven Furnace

Working Principle and Structure of Atmosphere Rotary Oven Furnace

Detailed analysis of the structure, control systems, heating principles, and applications of atmosphere rotary oven furnaces.

Read more
Working Principles and Performance Characteristics of Various Sintering Furnaces for Advanced Ceramics

Working Principles and Performance Characteristics of Various Sintering Furnaces for Advanced Ceramics

An in-depth analysis of different sintering furnaces used in advanced ceramics manufacturing, focusing on their working principles and performance characteristics.

Read more
Importance of Vacuum Leak Detection in Vacuum Atmosphere Furnaces

Importance of Vacuum Leak Detection in Vacuum Atmosphere Furnaces

Explains the necessity of vacuum leak detection in vacuum atmosphere furnaces and the methods used for such detection.

Read more
Operational Guide for Inert Atmosphere Protection Furnace in Mixed Atmosphere

Operational Guide for Inert Atmosphere Protection Furnace in Mixed Atmosphere

Detailed guide on operating an inert atmosphere protection furnace in a mixed atmosphere, emphasizing gas control, safety measures, and process adjustments.

Read more
Vacuum Atmosphere Furnaces: High Temperature Processes and Applications

Vacuum Atmosphere Furnaces: High Temperature Processes and Applications

An overview of vacuum atmosphere furnaces, their types, structures, and applications in high-temperature processes.

Read more
Improving Usage of Atmosphere Furnaces

Improving Usage of Atmosphere Furnaces

Guidelines and precautions for effective and safe operation of atmosphere furnaces.

Read more
Understanding Vacuum Atmosphere Furnace Temperature Control and Heat Transfer

Understanding Vacuum Atmosphere Furnace Temperature Control and Heat Transfer

An in-depth look at vacuum atmosphere furnace temperature control and the various heat transfer mechanisms.

Read more
Classification and Characteristics of Controlled Atmosphere Heat Treatment Furnace

Classification and Characteristics of Controlled Atmosphere Heat Treatment Furnace

An overview of different types and key features of controlled atmosphere heat treatment furnaces.

Read more
Atmosphere Furnace Gas Monitoring: Importance and Applications

Atmosphere Furnace Gas Monitoring: Importance and Applications

Discusses the necessity and methods of gas monitoring in chamber atmosphere furnaces for various high-temperature processes.

Read more
Choosing the Right Tube Furnace for Laboratory Use

Choosing the Right Tube Furnace for Laboratory Use

Guidelines on selecting tube furnaces based on temperature, sample size, temperature zones, functions, and vacuum pumps.

Read more
Understanding Laboratory Tube Furnaces

Understanding Laboratory Tube Furnaces

An in-depth look at the structure, advantages, installation, precautions, and differences between tube and box resistance furnaces.

Read more

Downloads

Catalog of Rotary Furnace

Download

Catalog of Electric Rotary Kiln

Download

Catalog of Rotary Tube Furnace

Download

Catalog of Pyrolysis Plant

Download

Catalog of Pyrolysis Furnace

Download

Catalog of Tube Furnace

Download

Catalog of Cvd Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Battery Material

Download

Catalog of Vacuum Hot Press Furnace

Download