Blog Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

9 months ago

Description and Applications of Warm Isostatic Press

Explanation of Warm Isostatic Press (WIP)

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

WIP systems can be gas or liquid pressurized and are often used for plastics and laminated products. These systems can be custom-built to meet specific requirements and can operate at various temperatures and pressures. Liquid WIP systems can reach temperatures up to 250°C, while gas WIP systems can go up to 500°C. Both cold and hot wall versions are available.

Electronic component
Electronic component

Use of WIP in the production of high-quality monolithic multilayer ceramic electronic components

One of the primary applications of Warm Isostatic Press is in the production of high-quality monolithic multilayer ceramic electronic components. These components include MLCC, MLCI, LTCC, HTCC, MCM, Piezoelectric, Filter, Varistor, Thermistor, and more.

Warm Isostatic Laminators are best suited for compressing green sheets to produce these electronic components. Compared to conventional uniaxial press methods, WIP delivers compressed bodies of higher quality. As a result, WIP has become the de facto standard system for manufacturing these components.

The process involves heating the liquid medium, such as water or oil thermal fluid, and continuously injecting it into a sealed pressing cylinder through a booster source. The pressing cylinder is equipped with a heating element to ensure accurate temperature control. The warm isostatic pressing process allows for isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium.

In conclusion, Warm Isostatic Press (WIP) is a versatile technology with applications in various industries. Its ability to provide uniform pressure from all directions makes it ideal for producing high-quality monolithic multilayer ceramic electronic components. Whether for plastics, laminated products, or electronic components, WIP offers a cost-effective and efficient solution for achieving optimal results.

Comparative Analysis between WIP and Conventional Uniaxial Press Method

Superiority of WIP in delivering higher quality compressed bodies

A minimum of three cassettes (each cassette typically consisting of the mandrel, mold, and powder) are in motion simultaneously; one is pressed, one is filled with powder, and one is de-bagged. The cycle time is 1 min or less, which calculates to 120,000 cycles/year on a 1-shift, 8-h basis. This rate of cycling places a much higher demand on the pressure vessel fatigue, and proper design is critical to withstand the higher pressures. The dry-bag method is preferred over the wet-bag for automated production of same-size or same-shape parts in lots of about 50 parts per hour or above.

Illustration of uniaxial pressing technology(1.Die fill stage 2.Compaction 3.Part ejection 4.Powder 5.Upper punch 6.Die 7.Lower punch 8.
Illustration of uniaxial pressing technology(1.Die fill stage 2.Compaction 3.Part ejection 4.Powder 5.Upper punch 6.Die 7.Lower punch 8."Green" compact)

Warm Isostatic Pressing (WIP) follows the same path as CIP except the parts are compacted both at pressure and low temperature to 100°C. The pressing fluid water may be substituted with oil. To date, there are a few applications for manufacturers in the electronics industry as a cost-effective means of compacting different shaped parts.

WIP units are designed for other applications requiring artificial pressure. They offer custom modes when special functions are required. WIP systems for production use water or oil thermal fluid and are heated using external circulation heaters. They feature a touch screen with computer-based graphical operation and have a standard interface.

The advantages of Warm Isostatic Pressing (WIP) include:

  1. More uniform product properties, greater homogeneity, and more precise control of the finished product dimensions.
  2. Greater flexibility in the shape and size of the finished product.
  3. Longer aspect ratios possible, allowing for the production of long thin pellets.
  4. Improved compaction of the powder, leading to improved densification.
  5. Ability to process materials with different characteristics and shapes.
  6. Reduced cycle times and improved productivity.

Widespread use of WIP as the de facto standard system in electronics manufacturing

Warm Isostatic Laminators, also known as Warm Isostatic Press (WIP), are best suited for compressing Green sheets to produce high-quality monolithic multilayer ceramic electronic components. These laminators deliver compressed bodies of higher quality than those manufactured by the conventional uniaxial press method. As a result, WIP has become the de facto standard system widely used in electronics manufacturing.

Piezoelectric Ceramics
Piezoelectric Ceramics

Both uniaxial pressing and Cold Isostatic Pressing (CIP) are methods for compacting powder samples. Uniaxial pressing applies force along one axis and is used for pressing simple shapes with fixed dimensions. It requires a mold and a hydraulic press and is relatively inexpensive. However, it has limitations such as short aspect ratio requirements and the ability to produce only simple shapes.

On the other hand, CIP is slower but can be used for small or large, simple or complex shapes. It offers more uniform green density, which leads to more even shrinkage during sintering and better shape control and uniform properties. CIP also eliminates the need for a wax binder, unlike uniaxial pressing.

In terms of isostatic pressing methods, low-cost elastomer tooling is used for iso-static pressing, but close tolerances can only be obtained for surfaces that are pressed against a highly accurate steel mandrel. Surfaces in contact with the elastomer tooling may require post-machining when tight tolerances and good surface finishes are specified.

Overall, Warm Isostatic Pressing (WIP) stands out in delivering higher quality compressed bodies and has become the preferred system in electronics manufacturing due to its effectiveness and cost-efficiency.

CONTACT US FOR A FREE CONSULTATION

KINTEK LAB SOLUTION's products and services have been recognized by customers around the world. Our staff will be happy to assist with any inquiry you might have. Contact us for a free consultation and talk to a product specialist to find the most suitable solution for your application needs!

Related Products

Warm Isostatic Press (WIP) Workstation 300Mpa

Warm Isostatic Press (WIP) Workstation 300Mpa

Discover Warm Isostatic Pressing (WIP) - A cutting-edge technology that enables uniform pressure to shape and press powdered products at a precise temperature. Ideal for complex parts and components in manufacturing.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Automatic Lab Warm Isostatic Press (WIP) 20T / 40T / 60T

Automatic Lab Warm Isostatic Press (WIP) 20T / 40T / 60T

Discover the efficiency of Warm Isostatic Press (WIP) for uniform pressure on all surfaces. Ideal for electronics industry parts, WIP ensures cost-effective, high-quality compaction at low temperatures.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Split cold isostatic presses are capable of providing higher pressures, making them suitable for testing applications that require high pressure levels.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Vacuum Lamination Press

Vacuum Lamination Press

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating Tungsten Crucible / Molybdenum Crucible

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

High precision diamond wire cutting machine

High precision diamond wire cutting machine

The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Diamond wire cutting machines are mainly used for precision cutting of ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, biomedical materials and other material analysis samples. Especially suitable for precision cutting of ultra-thin plates with thickness up to 0.2mm.

12 inch/24 inch high precision automatic diamond wire cutting machine

12 inch/24 inch high precision automatic diamond wire cutting machine

The high precision automatic diamond wire cutting machine is a versatile cutting tool that uses a diamond wire to cut through a wide range of materials, including conductive and non-conductive materials, ceramics, glass, rocks, gems, jade, meteorites, monocrystalline silicon, silicon carbide, polycrystalline silicon, refractory bricks, epoxy boards, and ferrite bodies. It is especially suitable for cutting various brittle crystals with high hardness, high value, and easy to break.

Single punching electric tablet punching machine

Single punching electric tablet punching machine

The electric tablet punching machine is a laboratory equipment designed for pressing various granular and powdery raw materials into discs and other geometric shapes. It is commonly used in pharmaceutical, healthcare products, food, and other industries for small batch production and processing. The machine is compact, lightweight, and easy to operate, making it suitable for use in clinics, schools, laboratories, and research units.

Lab pellet press machine for glove box

Lab pellet press machine for glove box

Controlled environment lab press machine for glove box. Specialized equipment for material pressing and shaping with high precision digital pressure gauge.


Leave Your Message