Knowledge Can a diamond tester tell the difference between lab grown and natural diamonds? The Surprising Truth
Author avatar

Tech Team · Kintek Solution

Updated 1 week ago

Can a diamond tester tell the difference between lab grown and natural diamonds? The Surprising Truth

In short, no. A standard, handheld diamond tester cannot tell the difference between a lab-grown diamond and a natural diamond. Because both are physically and chemically identical, these tools will correctly identify both stones as "diamond" without distinguishing their origin.

A standard diamond tester confirms a stone's identity by measuring its thermal or electrical conductivity. Since lab-grown and natural diamonds are both pure carbon with the same crystal structure, they register identically. True differentiation requires specialized gemological laboratory equipment.

Why Standard Testers See Them as the Same

A common misconception is that a lab-grown diamond is a "fake" diamond. This is incorrect. It is a real diamond, simply created in a different environment. This is the key to understanding why basic testers fail to distinguish them.

The Principle of a Diamond Tester

Most handheld diamond testers are designed to do one thing: separate diamonds from common simulants like cubic zirconia or moissanite. They work by touching the stone with a small metal tip that measures how quickly it conducts heat or, in some advanced testers, electricity.

Identical Physical Properties

Diamonds, both natural and lab-grown, are exceptionally good thermal conductors. They pull heat away from the tester's tip far more effectively than any simulant. Since a lab-grown diamond is chemically pure carbon crystallized in the same isometric structure as a natural one, its thermal and electrical properties are identical. The tester simply registers "diamond."

What Testers Can Detect

These tools are highly effective for their intended purpose: flagging fakes. A tester will easily show that cubic zirconia, glass, or white sapphire are not diamonds. However, its job ends there. It cannot provide information about the diamond's origin.

How Experts Actually Distinguish Them

While a simple tester is blind to a diamond's origin, a trained gemologist with advanced laboratory equipment can make a definitive identification. The differences are subtle and relate directly to their vastly different growth environments.

Analyzing Growth Patterns

Natural diamonds form over billions of years under chaotic conditions, resulting in specific growth patterns and graining. Lab-grown diamonds are created in a highly controlled process over weeks or months, which produces different, more uniform growth structures. These can only be seen with powerful magnification and specialized lighting.

Identifying Unique Inclusions

Inclusions are tiny imperfections within a diamond. In natural diamonds, these are often microscopic crystals of other minerals that were trapped during formation. Inclusions in lab-grown diamonds, however, may be tiny metallic remnants from the growth chamber—a clear indicator of a man-made origin.

The Role of Sophisticated Equipment

Gemological labs use advanced spectroscopic instruments to analyze how a diamond interacts with light, particularly in the ultraviolet spectrum. The specific way a diamond fluoresces or phosphoresces under deep UV light can reveal its atomic structure and conclusively determine if it grew in the earth or in a lab.

Deliberate Markings: Laser Inscriptions

To ensure full transparency, most reputable producers of lab-grown diamonds voluntarily use a micro-laser to inscribe the stone's girdle with a serial number and a phrase like "Lab Grown." This inscription is invisible to the naked eye but is easily seen under a jeweler's loupe.

Understanding the Trade-offs

The inability of a simple tester to differentiate between lab and natural diamonds highlights a crucial point: you are choosing between two versions of the same material, with the primary difference being origin and rarity.

The Question of Rarity vs. Technology

A natural diamond's value is heavily tied to its rarity as a finite, geological resource. A lab-grown diamond's value is based on the technology, energy, and expertise required to create it. Because they can be produced on demand, they do not have the same rarity-driven value.

The Factor of Price

The most significant practical difference for a buyer is price. For a given budget, a lab-grown diamond will be substantially larger and of higher quality (in terms of color and clarity) than its natural counterpart.

Making the Right Choice for Your Goal

Ultimately, the choice depends entirely on your personal priorities. Neither is inherently "better"—they are simply different products that cater to different goals.

  • If your primary focus is maximum size and quality for your budget: A lab-grown diamond provides a visually stunning stone at a much more accessible price point.
  • If your primary focus is traditional value and rarity: A natural diamond, with its billions of years of history and finite supply, is the classic choice.
  • If your primary focus is absolute certainty of origin: Always rely on a grading report from a respected gemological laboratory (like GIA or IGI), which will definitively state whether the diamond is natural or lab-grown.

Understanding that both are real diamonds empowers you to choose based on what matters most to you, whether that is budget, origin, or the story behind the stone.

Summary Table:

Aspect Standard Diamond Tester Expert Gemological Analysis
Primary Function Identifies diamond vs. simulants (CZ, moissanite) Determines origin (natural vs. lab-grown)
Basis of Detection Thermal/electrical conductivity Growth patterns, inclusions, spectroscopy
Result for Lab-Grown Registers as "diamond" Identified as "lab-grown"
Equipment Required Handheld tester Advanced laboratory instruments (microscope, spectrometer)

Need Precise Analysis for Your Materials?

While a standard diamond tester can't distinguish origin, precise material analysis is critical for research and quality control. KINTEK specializes in providing advanced laboratory equipment and consumables to meet your exact needs.

We can help you:

  • Select the right analytical instruments for your specific applications.
  • Ensure accurate and reliable results with high-quality lab supplies.
  • Enhance your laboratory's capabilities and efficiency.

Contact us today to discuss how our solutions can support your work. Our experts are ready to assist you in finding the perfect equipment for your laboratory challenges.

Get in touch with our specialists now!

Related Products

People Also Ask

Related Products

CVD Diamond for Thermal Management Applications

CVD Diamond for Thermal Management Applications

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Microwave Plasma Chemical Vapor Deposition MPCVD Machine System Reactor for Lab and Diamond Growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Cylindrical Resonator MPCVD Machine System Reactor for Microwave Plasma Chemical Vapor Deposition and Lab Diamond Growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

High Shear Homogenizer for Pharmaceutical and Cosmetic Applications

High Shear Homogenizer for Pharmaceutical and Cosmetic Applications

Enhance lab efficiency with our high-speed Laboratory Emulsifier Homogenizer for precise, stable sample processing. Ideal for pharmaceuticals & cosmetics.

Mini SS High Pressure Autoclave Reactor for Laboratory Use

Mini SS High Pressure Autoclave Reactor for Laboratory Use

Mini SS High Pressure Reactor - Ideal for medicine, chemical, and scientific research industries. Programmed heating temp and stirring speed, up to 22Mpa pressure.

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

Customizable High Pressure Reactors for Advanced Scientific and Industrial Applications

This laboratory-scale high-pressure reactor is a high-performance autoclave engineered for precision and safety in demanding research and development environments.

Electric Lab Cold Isostatic Press CIP Machine for Cold Isostatic Pressing

Electric Lab Cold Isostatic Press CIP Machine for Cold Isostatic Pressing

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

Single Punch Electric Tablet Press Machine Laboratory Powder Tablet Punching TDP Tablet Press

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Benchtop Laboratory Homogenizer Mixer with 4 Inch PP Chamber

Benchtop Laboratory Homogenizer Mixer with 4 Inch PP Chamber

Compact and efficient glue homogenizer for precise sample preparation in laboratories, featuring a 4-inch PP chamber, corrosion-resistant design, user-friendly LCD display, and customizable speed settings for optimal homogenization results.

Custom PTFE Teflon Parts Manufacturer for Sampling Filters

Custom PTFE Teflon Parts Manufacturer for Sampling Filters

PTFE filter element is a commonly used industrial filter element, mainly used to filter corrosive media such as high-purity chemical substances, strong acids, and strong alkalis.

Warm Isostatic Press for Solid State Battery Research

Warm Isostatic Press for Solid State Battery Research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Inclined Rotary Plasma Enhanced Chemical Vapor Deposition PECVD Equipment Tube Furnace Machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Laboratory Jar Ball Mill with Alumina Zirconia Grinding Jar and Balls

Laboratory Jar Ball Mill with Alumina Zirconia Grinding Jar and Balls

Grind to perfection with alumina/zirconia grinding jars and balls. Available in volume sizes from 50ml to 2500ml, compatible with various mills.


Leave Your Message