Knowledge How hard is DLC coating?
Author avatar

Tech Team · Kintek Solution

Updated 3 months ago

How hard is DLC coating?

DLC coating, which stands for Diamond-Like Carbon coating, is a type of coating that is known for its hardness and scratch resistance. It is produced using a process called Plasma-Enhanced Chemical Vapor Deposition (PECVD), which is a type of Chemical Vapor Deposition (CVD) technique.

DLC coating is a metastable form of amorphous carbon that contains a significant amount of sp3 bonds. This gives the coating its diamond-like properties, such as high hardness and chemical resistance. In fact, DLC coatings have a hardness of around 113 GPa on the Vickers hardness scale, which is higher than that of diamonds (which rate at around 70 to 100 GPa).

PECVD is a scalable and efficient method for producing DLC coatings. It offers several advantages over other coating methods, such as lower temperatures (coatings can be made at room temperature), chemical stability, fewer toxic byproducts, quick processing time, and high deposition rates. This makes it suitable for applications like packaging films.

The process of DLC coating involves the use of plasma to deposit a layer of carbon onto a substrate. The plasma is created by exciting and ionizing a mixture of carbon and hydrogen gases. Once the plasma is formed, the carbon and hydrogen atoms combine on the surface of the substrate to form the DLC coating. The resulting coating has a diamond-like appearance and exhibits high hardness and scratch resistance.

DLC coatings have various applications, including as protective coatings for different materials, tribological coatings for automotive components to improve wear resistance and reduce friction, and tool coatings for machining applications. They can be deposited on a wide range of substrates and can be formed at relatively low temperatures, making them suitable for various industries.

In summary, DLC coating is a hard and scratch-resistant coating that is produced using plasma-enhanced chemical vapor deposition. It has a diamond-like appearance and exhibits high hardness and chemical resistance. The coating process involves the deposition of carbon onto a substrate using plasma excitation and ionization. DLC coatings have various applications in different industries due to their excellent properties.

Upgrade your laboratory equipment with KINTEK's cutting-edge DLC coating technology. Our diamond-like carbon coatings offer unparalleled hardness and scratch-resistance, surpassing even the durability of diamonds. With our plasma enhanced chemical vapor deposition method, we can customize the properties of the DLC coating to suit your specific needs. Experience the environmentally friendly and high adhesion properties of DLC coatings, perfect for protecting a wide range of materials. Enhance the performance and longevity of your laboratory equipment with KINTEK's DLC coatings. Contact us today for a consultation.

Related Products

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition

RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

Carbide Lab Press Mold

Carbide Lab Press Mold

Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.

CVD Diamond for dressing tools

CVD Diamond for dressing tools

Experience the Unbeatable Performance of CVD Diamond Dresser Blanks: High Thermal Conductivity, Exceptional Wear Resistance, and Orientation Independence.

Assemble Square Lab Press Mold

Assemble Square Lab Press Mold

Achieve perfect sample preparation with Assemble Square Lab Press Mold. Quick disassembly eliminates sample deformation. Perfect for battery, cement, ceramics, and more. Customizable sizes available.

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

The 4-inch stainless steel chamber fully automatic laboratory glue homogenizer is a compact and corrosion-resistant device designed for use in glove box operations. It features a transparent cover with constant torque positioning and an integrated mold opening inner cavity for easy disassembly, cleaning, and replacement.

Electrode polishing material

Electrode polishing material

Looking for a way to polish your electrodes for electrochemical experiments? Our polishing materials are here to help! Follow our easy instructions for best results.

CVD diamond domes

CVD diamond domes

Discover CVD diamond domes, the ultimate solution for high-performance loudspeakers. Made with DC Arc Plasma Jet technology, these domes deliver exceptional sound quality, durability, and power handling.

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

The 4-inch aluminum alloy cavity fully automatic laboratory glue dispensing machine is a compact and corrosion-resistant device designed for laboratory use. It features a transparent cover with constant torque positioning, an integrated mold opening inner cavity for easy disassembly and cleaning, and an LCD text display color facial mask button for ease of use.


Leave Your Message