Knowledge What device is used to test real diamonds? — 7 Key Features Explained
Author avatar

Tech Team · Kintek Solution

Updated 1 month ago

What device is used to test real diamonds? — 7 Key Features Explained

When it comes to testing the authenticity of diamonds, one of the most reliable devices is the Electrical Conductivity Diamond Tester.

This tool is specifically designed to identify real diamonds by leveraging their unique thermal and electrical properties.

What device is used to test real diamonds? — 7 Key Features Explained

What device is used to test real diamonds? — 7 Key Features Explained

1. Thermal Conductivity

The Electrical Conductivity Diamond Tester uses the superior thermal conductivity of diamonds to differentiate them from imitations.

When the probe of the tester touches a real diamond, it conducts thermal energy rapidly, causing a measurable temperature drop, which is indicated by a glow.

If the stone does not exhibit this characteristic, it is likely a fake.

2. Electrical Conductivity

Real diamonds have excellent electrical conductivity.

The tester has a small probe connected to a small electrode.

When this probe touches a real diamond, the diamond glows, indicating its authenticity.

This method is effective because diamonds, unlike most other gemstones, are excellent conductors of heat and electricity.

3. Versatility

This tester is specifically designed to test diamonds and, in some cases, moissanite.

It is not suitable for testing other gemstones like rubies.

The tester can quickly screen multiple diamonds, providing assurance of their authenticity.

4. Advanced Detection

Some advanced models use ultraviolet short waves instead of heat and electrical conductivity, which helps in identifying synthetic diamonds that might fool normal diamond testers.

5. Laboratory Techniques

In addition to the Electrical Conductivity Diamond Tester, laboratories use sophisticated techniques such as spectroscopy, microscopy, and luminescence under shortwave ultraviolet light to determine a diamond's origin.

Instruments like the DiamondSure and the DiamondView, produced by the DTC and marketed by the GIA, are also used for this purpose.

6. Non-Destructive Testing

Identification methods for diamonds have evolved from destructive scratch tests to non-destructive electronic thermal probes.

These probes use a pair of battery-powered thermistors to measure thermal conductivity, a property that is unique to diamonds.

This test is quick, taking only two to three seconds, and is widely used in gemological centers.

7. Magnification

Magnification is another important feature in diamond testers.

It allows for a more detailed inspection of the diamond, revealing blemishes, inclusions, and other anomalies that might indicate a fake.

This feature is crucial for ensuring the authenticity of the diamond.

Continue exploring, consult our experts

Discover the precision and reliability of the Electrical Conductivity Diamond Tester — your go-to solution for authenticating diamonds with unmatched accuracy.

As the trusted leader in gemological equipment, KINTEK SOLUTION is committed to providing cutting-edge tools that streamline the identification process.

Don't settle for less—embrace the advanced technology that distinguishes real diamonds from their imitations.

Explore our comprehensive range of diamond testing devices and elevate your laboratory's capabilities today!

Related Products

High precision diamond wire cutting machine

High precision diamond wire cutting machine

The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Workbench 800mm * 800mm diamond single wire circular small cutting machine

Diamond wire cutting machines are mainly used for precision cutting of ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, biomedical materials and other material analysis samples. Especially suitable for precision cutting of ultra-thin plates with thickness up to 0.2mm.

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.

12 inch/24 inch high precision automatic diamond wire cutting machine

12 inch/24 inch high precision automatic diamond wire cutting machine

The high precision automatic diamond wire cutting machine is a versatile cutting tool that uses a diamond wire to cut through a wide range of materials, including conductive and non-conductive materials, ceramics, glass, rocks, gems, jade, meteorites, monocrystalline silicon, silicon carbide, polycrystalline silicon, refractory bricks, epoxy boards, and ferrite bodies. It is especially suitable for cutting various brittle crystals with high hardness, high value, and easy to break.

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth

Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Bell-jar Resonator MPCVD Diamond Machine for lab and diamond growth

Get high-quality diamond films with our Bell-jar Resonator MPCVD machine designed for lab and diamond growth. Discover how Microwave Plasma Chemical Vapor Deposition works for growing diamonds using carbon gas and plasma.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

CVD Diamond for dressing tools

CVD Diamond for dressing tools

Experience the Unbeatable Performance of CVD Diamond Dresser Blanks: High Thermal Conductivity, Exceptional Wear Resistance, and Orientation Independence.

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

CVD diamond for thermal management

CVD diamond for thermal management

CVD diamond for thermal management: High-quality diamond with thermal conductivity up to 2000 W/mK, ideal for heat spreaders, laser diodes, and GaN on Diamond (GOD) applications.

Optical Windows

Optical Windows

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.


Leave Your Message