Knowledge What is the Electrical Resistivity of Molybdenum Disilicide? 5 Key Points Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 weeks ago

What is the Electrical Resistivity of Molybdenum Disilicide? 5 Key Points Explained

Molybdenum disilicide (MoSi2) is a material that shows a unique property: its electrical resistivity increases as the temperature rises. This characteristic makes it ideal for use as a molybdenum disilicide (MoSi2) heating element in high-temperature applications. Understanding this property is crucial for optimizing the performance and longevity of molybdenum disilicide (MoSi2) heating elements in industrial furnaces and other high-temperature environments.

5 Key Points Explained: What Makes Molybdenum Disilicide Ideal for High-Temperature Applications

What is the Electrical Resistivity of Molybdenum Disilicide? 5 Key Points Explained

1. Temperature Dependence of Electrical Resistivity

  • Resistivity Increase with Temperature: The resistivity of MoSi2 rises dramatically as the temperature increases. This is beneficial for temperature control in molybdenum disilicide (MoSi2) heating elements, allowing for more precise regulation of heat output at different temperatures.
  • Operational Considerations: At temperatures around 300°C, the power output of a molybdenum disilicide (MoSi2) heating element is less than 35% of its maximum output. This is critical for designing systems that require consistent power delivery across different temperature ranges.

2. Stability and Performance of MoSi2 Elements

  • Resistance Stability: Under normal use, the resistance of a molybdenum disilicide (MoSi2) heating element does not change significantly. This stability ensures that the element can be mixed with new and old elements without affecting performance.
  • Installation Guidelines: When installing molybdenum disilicide (MoSi2) heating elements in a furnace, it is recommended to use separators between the shanks to prevent damage. The width of the separator must match the space of the heating element to avoid breakage during installation.

3. Oxidation Resistance and Surface Protection

  • Protective SiO2 Layer: MoSi2 heating elements form a layer of light and dense quartz (SiO2) on their surface when used in an oxidizing atmosphere at high temperatures. This protective layer enhances the element's resistance to oxidation, allowing it to operate at temperatures up to 1800°C.
  • Pest Oxidation: At low temperatures (around 550°C), MoSi2 elements can undergo a pest oxidation that produces a yellowish powder. While this oxidation does not harm the element's performance, it can lead to product contamination, so operating in this temperature range should be avoided.

4. Electrical Resistivity Data

  • Specific Resistivity Value: The electrical resistivity of MoSi2 thin films was found to be 134 µΩ·cm at around 830°C. This data point is essential for engineers and designers when calculating the electrical requirements and efficiency of molybdenum disilicide (MoSi2) heating element in specific applications.

5. Manufacturing and Synthesis

  • Synthesis Process: MoSi2 is synthesized through the direct reaction of molybdenum and silicon powders at high temperatures in a hydrogen atmosphere. The purity and particle size of the powders are critical for obtaining high-quality MoSi2.
  • Manufacturing Techniques: MoSi2 products can be manufactured using cold press sintering or hot press sintering methods. The addition of SiO2 to the material can enhance its working temperature and oxidation resistance.

Understanding the electrical resistivity of MoSi2, along with its temperature dependence, stability, and manufacturing processes, is crucial for selecting and optimizing molybdenum disilicide (MoSi2) heating element for various high-temperature applications. This knowledge ensures that the elements perform reliably and efficiently, meeting the stringent requirements of industrial furnaces and other high-temperature environments.

Continue exploring, consult our experts

Discover how molybdenum disilicide (MoSi2) heating element can revolutionize your high-temperature processes with their unparalleled temperature-dependent resistivity, resistance stability, and oxidation resistance. Don't miss out on the perfect blend of precision and durability that KINTEK SOLUTION offers. Unlock the potential of your furnace with our expertly crafted MoSi2 solutions. Contact us today to explore how our products can optimize your performance and extend the longevity of your heating elements. Your superior high-temperature operation starts here.

Related Products

molybdenum disilicide (MoSi2) heating element

molybdenum disilicide (MoSi2) heating element

Discover the power of Molybdenum Disilicide (MoSi2) Heating Element for high-temperature resistance. Unique oxidation resistance with stable resistance value. Learn more about its benefits now!

Molybdenum Sulfide (MoS2) Sputtering Target / Powder / Wire / Block / Granule

Molybdenum Sulfide (MoS2) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Molybdenum Sulfide materials at reasonable prices for your laboratory needs. Customized shapes, sizes, and purities available. Browse our selection of sputtering targets, powders, and more.

CVD boron doped diamond

CVD boron doped diamond

CVD boron-doped diamond: A versatile material enabling tailored electrical conductivity, optical transparency, and exceptional thermal properties for applications in electronics, optics, sensing, and quantum technologies.

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Molybdenum Carbide (Mo2C) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Molybdenum Carbide (Mo2C) materials for your lab? Look no further! Our expertly-produced materials come in a range of purities, shapes, and sizes to meet your unique needs. Shop sputtering targets, coatings, powders, and more today.

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

High Purity Molybdenum (Mo) Sputtering Target / Powder / Wire / Block / Granule

High Purity Molybdenum (Mo) Sputtering Target / Powder / Wire / Block / Granule

Looking for Molybdenum (Mo) materials for your laboratory? Our experts produce custom shapes and sizes at reasonable prices. Choose from a wide selection of specifications and sizes. Order now.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

High Purity Molybdenum Oxide (MoO3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Molybdenum Oxide (MoO3) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Molybdenum Oxide (MoO3) materials for your laboratory needs? Our company provides tailored solutions at reasonable prices. We offer a wide range of sputtering targets, coating materials, powders, and more. Contact us today!

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide IrO2 for electrolysis of water

Iridium dioxide, whose crystal lattice is rutile structure. Iridium dioxide and other rare metal oxides can be used in anode electrodes for industrial electrolysis and microelectrodes for electrophysiological research.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

High Purity Silicon Dioxide (SiO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Silicon Dioxide (SiO2) Sputtering Target / Powder / Wire / Block / Granule

Looking for Silicon Dioxide materials for your lab? Our expertly tailored SiO2 materials come in various purities, shapes, and sizes. Browse our wide range of specifications today!

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

High Purity Silicon (Si) Sputtering Target / Powder / Wire / Block / Granule

High Purity Silicon (Si) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Silicon (Si) materials for your laboratory? Look no further! Our custom-produced Silicon (Si) materials come in various purities, shapes, and sizes to suit your unique requirements. Browse our selection of sputtering targets, powders, foils, and more. Order now!

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Silicon Carbide (SiC) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Silicon Carbide (SiC) materials for your lab? Look no further! Our expert team produces and tailors SiC materials to your exact needs at reasonable prices. Browse our range of sputtering targets, coatings, powders, and more today.

Cobalt Silicide (CoSi2) Sputtering Target / Powder / Wire / Block / Granule

Cobalt Silicide (CoSi2) Sputtering Target / Powder / Wire / Block / Granule

Looking for affordable Cobalt Silicide materials for your laboratory research? We offer tailored solutions of different purities, shapes, and sizes, including sputtering targets, coating materials, and more. Explore our range now!

Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Titanium Silicon Alloy (TiSi) Sputtering Target / Powder / Wire / Block / Granule

Discover our affordable Titanium Silicon Alloy (TiSi) materials for laboratory use. Our custom production offers various purities, shapes, and sizes for sputtering targets, coatings, powders, and more. Find the perfect match for your unique needs.


Leave Your Message