Graphene is grown on copper primarily due to copper's low carbon solubility, which facilitates a surface-based growth mechanism that results in high-quality, large-area graphene sheets.
This method is particularly effective in chemical vapor deposition (CVD) processes, where copper acts as a catalyst and substrate.
Why is Graphene Grown on Copper? 5 Key Reasons Explained
1. Low Carbon Solubility of Copper
Copper has a low carbon solubility compared to other transition metals like nickel.
This property is crucial because it allows for a surface-based growth mechanism of graphene.
In CVD processes, when copper is exposed to gaseous hydrocarbons at high temperatures, the carbon atoms from the hydrocarbons do not readily dissolve into the copper but instead form graphene layers on the surface.
This leads to the formation of graphene directly on the copper surface without significant incorporation into the metal substrate.
2. Surface Growth Mechanism
The surface growth mechanism on copper is advantageous because it typically results in fewer defects and higher quality graphene.
Since the graphene forms directly on the surface, it is less likely to be affected by impurities or defects that might arise from interactions with the bulk metal.
This is in contrast to nickel, which has a high carbon solubility and leads to a mechanism where carbon diffuses into the bulk metal and then precipitates out as graphene during cooling, often resulting in multilayer graphene with more defects.
3. Large-Area Graphene Production
Copper substrates are also favored because they allow for the production of large-area graphene sheets.
The use of copper enclosures as substrates provides a large deposition site for graphene.
Through careful control of the CVD process parameters, such as temperature and pressure, researchers have been able to grow single-crystal graphene sheets with sizes up to 2 mm.
This scalability is important for practical applications, particularly in electronics and photonics, where large, uniform graphene films are required.
4. Reduced Transfer Challenges
Growing graphene directly on copper can also mitigate some of the challenges associated with transferring graphene from the growth substrate to other substrates for device fabrication.
Direct growth on copper can be advantageous for applications where the copper can remain as part of the final device structure.
This reduces the need for transfer and potentially improves the overall device performance and reliability.
5. Enhanced Surface Treatment
Researchers have also developed techniques to further enhance the quality of graphene grown on copper by treating the copper substrate before the CVD process.
This can involve chemical treatments that reduce catalytic activity, increase the grain size of the copper, and modify the surface morphology to facilitate the growth of graphene with fewer imperfections.
Continue exploring, consult our experts
Discover the cutting-edge advantages of KINTEK SOLUTION's graphene on copper substrates for your research and industry needs!
With our precise CVD processes, we leverage copper's exceptional low carbon solubility for unparalleled surface-based growth, resulting in high-quality, defect-free graphene sheets.
Don't miss out on our large-area graphene production capabilities and reduced transfer challenges for seamless integration into your applications.
Elevate your graphene research with KINTEK SOLUTION today!